chains and unions of prime submodules

Authors

  • yasoub shahvalizadeh Islamic Azad University of Ardabil Branch

DOI:

https://doi.org/10.24200/jrset.vol5iss03pp9-16

Abstract

Abstract. Let R be a commutative ring with identity and let M be a unital R-module. In this paper we study the various properties of prime submodules. Also we give a new equivalent conditions for a minimal prime submodules of an R-module to be a finite set, whenever R is a Noetherian ring. Finally we prove the Prime avoidance Theorem for modules in different states. 

References

S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Alg. 23(1995), 1131-1144.

K. Bahmanpour, A. Khojali and R. Naghipour A note on minimal prime divisors of an ideal, Algebra Colloq. 18(2011), 727-732.

M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra. 305(2006), 1128-1148.

W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, UK, 1993.

J. Dauns, Prime modules, J. Reine Anegew. Math. 298(1978), 156-181.

J. Jenkins and P. F. Smith, On the prime radical of a module over commutative ring, Comm. Alg. 20(1992), 3593-3602.

O. A. Karamzadeh, The Prime Avoidance Lemma revisited, Kyungpook Math. J. 52(2012), 149-153.

C. P. Lu, Unions of prime submodules, Houston J. Math. 23, no.2(1997), 203-213.

K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow math. J. 39(1997), 285-293.

S. H. Man and P. F. Smith, On chains of prime submodules, Israel J. Math. 127(2002), 131-155.

A. Marcelo and J. Munoz Maque, Prime submodules, the discent invariant, and modules of finite length, J. Algebra 189(1997), 273-293.

H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.

R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23(1993), 1041-1062.

A. A. Mehrvarz, K. Bahmanpour and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Alg. Appl. 8(2009), 855-862.

J. J. Rotman, An introduction to homological algebra, Pure Appl. Math., Academic Press, New York, 1979.

D. Pusat-Yilmaz and P. F. Smith, Chain conditions in modules with krull dimension, Comm. Alg. 24(13)(1996), 4123-4133.

Published

2019-09-13

Issue

Section

Articles