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 In this paper, the elasto-viscoplastic Constitutive model is applied within the Microplane framework. The 
use of strain-dependent models allows measuring the effect of loading speed on the soil. Additionally, rate-
based behavior models in simulation modeling avoid the uniqueness of the ruling equation. The proposed 
model can plot the stress-strain history on plates with different angles inside the soil. Therefore, valuable 
information can be obtained about the failure plane. Using the Microplane framework enables this hybrid 
behavior model to predict local strain. 
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1. INTRODUCTION 

Microplane refers to planes within materials that have 
different angles. This model is used to examine the 
structure of fine materials. Taylor proposed the original 
idea for this model and was called Slip Panels (Pham et 
al, 2011). Taylor's idea was formulated by Roters (2019). 
Many researchers have used this model to study metals, 
soils, and rocks. 

Before 1984, microscopic Constitutive models were 
developed on a consistent fixed basis. But proving 
satisfactory coping conditions was a difficult issue for this 
Constitutive model. This ambiguity was resolved by 
Bazant and Gambarova (1984). In this method, instead of 
the stress tensor image, the strain tensor image is applied 
to the image planes. As a result, the compatibility 
condition is fulfilled and the equilibrium conditions are 
created using the Principle of Virtual Work. 

The elasto-viscoplastic Constitutive model identified 
in this paper was presented by Teichtmeister et al., 
(2017). This Constitutive model was developed using 
concepts of critical state and viscoplasticity. The benefits 
of this Constitutive model include primary and secondary 
pressure modeling, predicting the effect of stress rate on 
Untrained shear tests, and creep modeling. In this 
constitutive model, the elastic strain is considered to be 
non-rate dependent. An advantage of this assumption is 
the ease of use of this constitutive model. Besides, the 
dependence of plastic strain on time seems more rational 
(Perzyna, 1966; Wu et al., 2018; Diehl et al., 2017). 

Microplane modeling of the elasto-viscoplastic 
behavior, allows us to use the unique features of both 
models simultaneously. On the one hand, the rate-
dependent behavior of the soil is simulated by the elasto-
viscoplastic model, and on the other, the behavior of the 
fine or microstructure is described by the Microplane 
framework. 

 
 
 

1.1. Formulation of elasto-viscoplastic Constitutive 
model 

Teichtmeister et al., (2017) considered the stress rate 

as two parts of elastic (
e
ij ) and viscoplastic (

vp
ij ). This 

model assumes that the strain rate is time-dependent. 
(1) 

The viscoplastic strain is calculated from the following 
equation: 
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Where the parameter   is calculated from the 
compatibility conditions. 

Three surfaces are used in this framework: 1- 
Reference yield surface ( 0f ): The yield surface that 
determines the state of the sample at the reference time ( t
). The definition of such a surface is to obtain the state of 
the soil sample at the required time (t). 

2- yield surface under loading ( 0f ): A surface that 
contains the stress state. 

3-Potential surface ( 0ˆ f ): The surface that 

determines the path and rate of strain. ( f̂ ) can be greater 
or smaller than ( f ). These three yield surfaces have the 
same formula but their sizes are different. 

The location of the surface with the horizontal axis is 
the parameter that determines the size of each surface 
(Figure 1). This parameter is equal to ( Lp ) for the loading 
yield surface and the reference yield surface is ( 0p ) and 
for the potential surface is ( 0p̂ ). 

The value of ( Lp ) changes as a result of loading, but 

the ( 0p̂ ) value changes with time. Assuming that the 
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sample is under stable loading, ( 0p̂ ) increases with time. 
This increase causes a viscoplastic strain in the model. 
The ( 0p ) value is calculated from the following equation: 

)()( 00 ppLnpLnee N                            
(4) 

Where (
Ne ) is the amount of porosity at ( 10 p ) and 

at the reference time of (, t ) and ( ) and ( ) are the 
isotropic consolidation line gradients in the loading and 
unloading state, respectively. 

 

 
Figure 1. Loading yield and reference yield surfaces and 

potential surface 
 
The relationship between 0p̂ and 0p is calculated from 

the following formula: 
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Where ij is the loading strain rate and vp
ij the 

viscoplastic strain rate, )10(LnC  and C are the 
index of secondary soil compaction. The value   is 
calculated using the following equation: 
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Where 0  is the  value obtained in the one-

dimensional consolidation test and  0ˆˆ pf  is the vector 
perpendicular to the potential surface in the stress path. 
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1.2. Microplane formulation 

The Virtual work performed by stress on the sphere 
volume of a per-unit radius can be obtained from the 
stress multiplier integral in the strain development. 

 V ijijδεσWδ                                                 (9) 

In the above relation ijδε is the strain tensor and ijσ is 
the stress tensor. The strain vector )

ndε (  can be divided 

into any plane by the perpendicular to the strain ( Ndε ) 
and the tangent to the plane ( Tdε ). 
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in  is the vector components perpendicular to the plane 

and ijδ  is the function of the delta kronker. Using the 
principle of virtual work, we can find the following 
relation for virtual work in terms of stress and strain 
components that are depicted on the desired plane: 
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Where A is the hemisphere surface with a unit radius, 

Nσ is the perpendicular stress vector and Tσ  is the 
tangential stress vector. If there is a Constitutive 
relationship between stress and strain, the following 
relationships can be rewritten for stress with the strain 
depicted on the plane: 
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By applying relations 15 and 16 in relation 14 we will 
have: 
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Deriving the perpendicular and tangential strain of the 

plane to the strain tensor, the following equations are 
obtained. 
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By placing relation 18 in relation 17, the stress-strain 

Constitutive model is obtained in the Microplanes 
framework. 
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A finite number of integration points can be used to 

estimate the relation 19, using the Gaussian numerical 
integral. These integration points are compatible with a 
limited number of Microplanes. Table 1 shows the unit 
vectors perpendicular to the planes and the weighting 
coefficients of integration. Using the numerical integral, 
the following relation can be used to determine the stress: 
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1.3. Applying elasto-viscoplastic Constitutive model in 
Microplane framework 

 
Table 1. Perpendicular vector and weight ratio of plane 

integration 
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In this section, Pastor-Zienkiewicz Constitutive model 

is implemented in the Microplane framework. Defined 
equations in Constitutive models use stress and strain 
variables. Therefore, the equations needed to calculate 
stress and strain depicted on each page from the invariant 
stress and strain values. 

Using the definitions of the perpendicular and tangent 
components of the stress on the plane, the following 
relation is obtained: 








 








 

























dq

pd
dq

pd

nn

n

d
d

T

N E
   

    
2

11

2
1

10

3/11




                          

(22) 

Where 1n  is the first component of the perpendicular 
vector on the plane, q and p are the stress invariants. A 
similar relation can also be given for strain: 
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(23) 
Using the Pastor-Zienkiewicz Constitutive Model, the 

following relation can be presented for plastic strain on 
plates: 
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By assigning stress and strain from equations 22 and 

23 to equation 24, the strain and stress invariants on each 
plane can be related. In the following equation, the plane 
number is shown with the subscript i. 
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The total stress development can be calculated by 

placing the equation 25 in equation 20. 
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1.4. Numerical Modeling 
Figures (2) to (9) present the results of modeling 

performed on normal consolidated soil (Liu et al, 2018). 
These tests are performed at the strain rates of

min/%00078.  and min/%1 . The parameters used in this 
modeling are as follows: 

 
Table 2. Parameters used in modeling 

0C  Ne    M      

0139.  515.1  3.  25.1  018.  151.  
 
As shown in Figures 2 and 3, the modeling results are 

in good agreement with the experimental results. 
As the strain rate increases, the constitution of the 

consolidated normal soil will be similar to that of the pre-
consolidated soil. 
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Figure 2. Results of a non-drained triaxial test with strain rate of min/%00078.  

(a) Stress path (b) Axial strain- deviator stress 
 
Figures 4 and 5 illustrate the variations of the deviator stress, bulk stress and pore water pressure over time. Stress 

changes increase in early times and decrease over time. In addition, by increasing the strain rate (1% / min), the pore water 
pressure initially increases and decreases at the end of the test, which indicates constitution similar to pre-consolidated clay. 
However, for the low strain rate, the pore water pressure increases steadily and then remain constant. 

 

 
Figure 3. Results of a non-drained triaxial test with strain rate of  min/%1  

(a) Stress path (b) Axial strain- deviator stress 
 

 
Figure 4. Variations (a) Deviator stress (b) Bulk stress (c) Pore water pressure over time for Non-drained triaxial test with 

strain rate of min/%00078. . 
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Figure 5. Variations (a) Deviator stress (b) Bulk stress (c) Pore water pressure over time for Non-drained triaxial test with 

strain rate of min/%1 . 
 
Figures 6 and 7 illustrate the changes in normal stress relative to normal strain. The normal stress on planes 5,6,7 and 8 

shows a maximum value as the strain rate increases. Using Figures 8 and 9, it can be concluded that the maximum shear 
stress on planes 5,6,7 and 8 is more likely due to the local strain on these planes. 

 

 
Figure 6. Normal stresses generated on different planes for non-drained triaxial test with strain rate of min/%00078. . 

 

 
Figure 7. Normal stresses generated on different planes for non-drained triaxial test with strain rate of min/%1 . 
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Figure 8. Normal stresses generated on different planes for non-drained triaxial test with strain rate of min/%00078. . 

 
 

 
Figure 9. Normal stresses generated on different planes for non-drained triaxial test with strain rate of min/%1 . 

 
2. CONCLUSION 

A constitutive model was presented to describe the 
mechanical behavior of the clay. This constitutive model 
was created by applying an elasto-viscoplastic 
constitutive model in the Microplane framework. The 
proposed model is capable of depicting behavior on 
planes within the material. we can detect failure 
mechanisms with this feature. The angles of fracture 
planes are determined with using this model. In addition, 
the constitutive dependence of material to time can also 
be modeled well. Briefly, the presented model has the 
advantages of both constitutive models. 
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