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forecasting model then validated using an effective fuzzy statistical method. The proposed model creates economical 

manufacturing of an affordable design in line with the design capability for manufacturing in terms of cost & price.  
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Abbreviations:   

ANFIS            Adaptive neuro fuzzy interface system 

 

MFG                Manufacturing 

ANN              Artificial neural network 

MPP                Market product price 

 
CFs                 Cost factors 

MRA               Multiple regression analysis 

 
DFM               Design for manufacturing 

MSE                Mean squared error 

 DRC               Design real cost 

 

NNs                 Neural networks 

 
FCM              Fuzzy clustering means 

 

PDP                 Profit designed product 

 
FMEA            Failure mode and effects analysis 

 

QC                   Quality control 

 
MAE              Mean absolute error 

 

RMSE              Root mean squared error  

 

 

1. Introduction 

In a competitive environment, it is necessary that the design process and cost engineering are 

combined for calculating the cost of design with the definition and selection of cost-effective factors. 

Cost estimation in the early stages of design projects involves a great deal of uncertainty. Therefore, 

there is a great demand for an effective way to reduce uncertainty in the product’s cost estimation. An 

effective-cost prediction method can be the process of identifying and measuring cost-effective factors 

in design for manufacturing (DFM). Optimization and cost reduction in the manufacturing process 

must begin with the design process and the prerequisite of this is to identify all the aspects of the design 

cost.  

These factors must be general, functional, flexible and integrated to be able to illuminate all the 

design cost perspectives regardless of product type and scope for the designer and manufacturer. The 

design cost factors should also cover all stages of the design, and the more these criteria are in the early 

stages of design, the more efficient it will be to control and optimize them. Our method can be used to 

predict manufacturing costs based on the cost of mechanical design. 

Before 1980, the cost estimation and determination of design and manufacturing projects has been 

accomplished by two methods: (1) feasibility study and (2) use of cost data in similar projects. Since 

artificial intelligence became popular in the 1980s, a new approach to estimating design costs has been 

introduced, while several studies have used different methods to estimate costs across a wide range of 

industrial applications. Later, in the 1990s, neural networks (NNs) were introduced as a branch of 

artificial intelligence as an alternative method of estimating manufacturing costs. (Anderson, 2017) 

presented a report on the design and engineering cost analysis of minerals processing. The use of neural 

networks for cost product packaging modeling was developed by (Zhang et al. 1996; Shtub and Versano, 

1999) compared to neural network performance and regression analysis when estimating the cost of 

constructing a steel pipe bending process.  (Cavalieri, et al. 2004) compared parametric models and 

neural networks to estimate production costs and concluded that the neural network performs better 

and is more reliable. (Verlinden, et al. 2008) developed MRA and ANN-based models to estimate the 
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cost of a sheet metal production. (Bo LI, et al. 2017) Researched on Design Innovation Approaches: 

product form, decoration materials, brand image building cost control& product promotion for 

Enhancing Product Value Based on Cost Control. (Arabzadeh and Niaki, 2018) estimated the cost of 

spherical storage tanks by artificial neural networks and hybrid regression. (Chan , 2002) introduced 

an expert system for manufacturability and cost evaluation. (Izadi et al. 2020) presented a review and 

cost structure models and cost factors of road freight transportation. 

The early stages of product development have uncertainties and factors such as the design time and 

the manufacturing process, and this directly affects the cost estimation of the product and design 

project (Xu et al. 2012). (Kolbachev, 2017) suggested that the cost of manufacturing a machine early in 

the engineering process can be estimated. Such an estimate is based on its parametric information 

integration index. Design processes are a structural index entropy-based approach. 

The most important reason for doing this research is the need to have a flexible way of accurately 

calculating the design cost to predict the manufacturing cost with actual cost data in the design process 

regardless of the type, shape and raw material used in making the product. It provides an applied 

flexible method for identifying & selecting design cost factors based on a mechanical designed product. 

Determination and calculation of design costs are existed by these factors for providing in a competitive 

market. The monitoring of cost-effective factors helps to optimize the price of the designed products. 

Calculated design costs as outputs can be used to predict manufacturing costs as a criterion of design 

for manufacturing and cost feasibility study. In the following, you will find out how to design cost 

factors, how to choose the most effective factors, and the design cost model and its application 

environment. The manufacturing cost forecasting function is also presented using the design cost in 

two linear-numerical and fuzzy-regression methods using real data.  

The rest of this paper is followed by four sections. Section 2 addresses the materials and methods of 

this paper to study the background as well as the comprehensive method. Section 3 is the results of the 

analyses on the proposed method. Section 4 performs the validation, comparison and sensitivity of the 

method. Finally, the conclusion and future works are drawn in Section 5.   

2. Materials and methods 

This model offers a comprehensive, flexible, and proactive approach that is based on the collection 

of frequently used operational data on the cost of designing or estimating them and makes it possible 

to predict and estimate the cost of manufacturing based on a fuzzy regression method for a product or 

set designed and it will develop the DFM method. Figure 1 illustrates a comprehensive view to the 

proposed method. 
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Fig. 1. A graphical view of our comprehensive method 

According to the flowchart the following steps must be taken: 
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Step 1 & 2: Determination of market product price (MPP) & profit designed product (PDP): 

Designer organizations can consider the designed product as a marketable product and determine 

the selling price based on the information related to the market and also consider the amount of profit 

from this sale based on their market strategies. 

The MPP and PDP should be determined by reliable data through the systematic market surveys 

and feasibility study. 

Step 3: Calculation of target cost of design (TCD): 

This model has two inputs from the internal environment (Design Real Cost) and external 

environment (Target Cost of Design). This step delivers the target cost of design (TCD) so it is needed 

to analyze all of the stages in the product design process and the cost is calculated by determining 

effective factors. The TCD is predicted by the PMP and PDP. The DRC should be calculated before 

starting the design process as proactive action. So a database for recording the DRC’s results is required 

to compare this information with the TCD. Analyzed information must have a target, trend, 

comparison, cause, and scope. 

At the beginning, this process in designer companies documented procedure is recommended. 

Step 4: Determining and verification the best performance conditions: 

Based on their strategic plans, design and manufacturing organizations should determine the 

conditions of the product presentation environment in terms of product price and the desired profit 

margin. 

For identifying the best condition, the following issues should be considered: 

The market price of product (MPP) should be presented as higher than average in the desired 

market. 

The design real cost (DRC) could be occurred in the low and medium level. 

Profit designed product (PDP) could be had two levels between medium and high. 

Step 5: Identification and definition of cost factors (CFs): 

This step gives the design real cost (DRC) that helps for determining the affordable product’s 

manufacturing volumes and it is used for estimating the returned capital of the product design. 

The new contributive method is based on researches, studies, technical interviews and audit results 

of several companies so this general practical model is applicable for determining cost in engineering 

design for economic manufacturing. 

The DRC formula has been generated by the effective design cost factors with a general application 

for all of the design & manufacturing organizations.  
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The following set of factors is used to calculate the DRC by applicable factors with notification to 

the rate of usability. The data related to the factors have been recorded by designers during the suitable 

stages of design activities.  

The following factors are used in the stages of mechanical design process regardless of product type, 

product application, and product complexity but the applicability level of these factors should be 

determined based on the scoring method through the knowledge of designers and designer’s 

qualifications. 

CF1: Cost of the design feasibility study  

This mechanical feasibility study will address the current mechanical system and suggest an 

alternative approach for mechanical system design. The design feasibility study is proactive teamwork 

that is providing evidence of capability for designing of the desired product as needed design inputs. 

This cost covers all of the dimensions of the feasibility study to product’s definition, written of 

engineering performance, tolerances review, adequate capacity, required tools and equipment, such as 

FMEA, risk analysis, life cycle analysis. (Nonami et al. 2005) 

CF2: Human cost (Designers) 

The human cost could be defined as salary, bonus, gifts and it is applicable for full time/ part-time 

personals which are in a design team. (Li et al. 2018)  

CF3: Software cost (General, Technical & Special) 

All of the costs related to software and applications that used in the design process for creating 

design outputs, design reviews, calculations and re-calculations, simulation and solving methods and 

operational testing could be specified. (Sánchez et al. 2017)    

CF4: Cost of customer’s verification/ user’s validation 

Sometimes designers need to get verification or validation for more confidence and the cost of these 

activities should be calculated for adding to design cost. (Maropoulos et al. 2010) 

CF5: Cost of design’s references 

Designers need to use books, standards, journals, technologies, knowledge, seminars, training 

workshops, specialized exhibitions, technical consulting. (Silva et al. 2019) 

CF6: Cost of documented researches 

Collection of data and creation information related to design and development of products could be 

a contented descriptive model of a design process, a respective model of design, computer-based 
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models, languages, representations, and environments of design, analysis of design such as DFM, 

reliability, & serviceability. (Finger et al. 1989) 

CF7: Cost of design's benchmarking 

Cost of activities for comparing a product in current and past such: similar designs, idea, sketch, 

technologies, patents. (Nick et al. 2010) 

 CF8: Cost of design review between inputs & outputs 

 A structured approach is described to analyze the design of mechanical systems and equipment 

which includes the design specification, and system, functional unit & component levels of design. The 

design review considers maintainability, reliability and all other factors which contribute to the total 

performance of a plant. Specific analysis techniques are described with respect to their applicability to 

different stages in a design review exercise. It covers all of the activities which be included comparison 

reports, structured meetings, and completion of review checklists, force analysis, DFM’s reports, and 

client's review. (Thompson et al. 2007) 

CF9: Cost of prototype building/Product Modeling 

One of the tangible costs in the design process is prototype building and this cost should be 

determined in operational condition for more effectiveness. (Jones et al. 1996; Otto et al. 2000) 

CF10: Cost of necessary tools, gages & equipment for verifying/validating 

If designers use some tools for measuring, control and verification, these costs will be added to the 

cost of design projects. (Ertas et al. 1992) 

CF11: Cost of time-consuming for design  

Design is one of the operations that is based on time planning / duration and could be affected by 

cost of design. This factor shall be measured by the monetary unit. (Xu et al. 2006; Holliman et al. 2019) 

CF12: Cost of design changes 

Each change in design stages shall be passed through review, verification and validation steps and 

all of these activities can increase the cost. It could change the design outputs in conjunction with 

design inputs so. (Ullah et al. 2016)  

CF13: Cost of specific environmental condition as applicable 

This is the cost of design for an environment such as material purification, less material variety, 

avoidance of toxins, use of recycled materials and includes eco-design, raw materials selection and use, 

manufacturing, material handling, installation and maintenance, use and end of life. (Sahiti et al. 2016) 
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CF14: Cost of re-calculations/testing /inspections 

Includes the cost of calculations with other design methods such as design verification, cost of 

laboratory tests, operational testing, durability testing, design of experiments calibration & 

measurement system analysis. (Hwang et al. 2004)  

Applicability of the cost factors for mechanical design stages are shown in Table 1. This table shows 

the importance of CFs with a number of applications for measuring and monitoring. After the 

definition and measurement of CFs, as it can be seen CF2, CF3 & CF10 must be measured and monitored 

continuously. The CF12 & CF13 should be controlled in planned intervals. Other CFs is used for 

increasing cost-effectiveness. 

Engineering design process is a specialized process that after achieving design costs, a decision-

making process and team action formation must be done. 

Table (1): Contribution of cost factors on design’s stages 

Tasks / cost 

factors 

CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 

Design 

Planning 

● ● ●       ●     

Generate, 

Develop & 

Verification 

● ● ● ● ● ● ● ● ● ●  ● ●  

Manufacturing 

& test of 

prototypes 

 ● ●     ● ● ●  ● ● ● 

Changes & 

Improvement 

Improvement 

 ● ●       ● ● ● ● ● 

 

 Step 6: Specification of cost applicable factors: 

The applicability coefficients of cost factor could be determined based on recognition and 

experience competent designers by surveys, interviews or Focus on group studies. At this point, design 

experts are scoring each of the cost factors with a scoring method based on product recognition. This 

stage can be done individually or in the form of a scoring team. It helps the designers who collect the 

most applicable cost factors for fast calculation of the real design cost.  

Step 7: Calculation of design real cost (DRC) by collecting cost factors: 

Based on the available factors, the design team will be able to anticipate and determine each of the 
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cost factors that have been selected as the applicable factor in the previous step and calculate the DRC 

by summing all the factors. Also, if the organization has already had experience in the previous similar 

design project, it can use its cost data at this stage. 

Step 8: Comparison of the DRC & the cost of similar previous designs (Where appropriate): 

If possible, the organization has had successful design projects in the past and its cost records are 

available, these results can be used to confirm the results of the new design costs.  

Step 9: Relating the DRC and TCD: 

Comparison of the DRC and TCD for making an optimum decision for conducting design process: 

(1) TCD-DRC ≥ 0   → Design Operation could be done. 

 TCD-DRC < 0   → Design process will be reviewed according to the cost management approach. 

It may be replaced with another option such as: outsourced design, change of design inputs, use of 

cheaper technology, elimination of unnecessary product specifications, and Customer agreement on 

reducing additional expectations.  

Also, the analyzed data from this model for each designed product could be used as benchmarked 

information for designing of other similar products. Comparing these results in designed 

products/projects could help managers/leaders for getting factual decision making for increasing the 

design effectiveness. 

Step 10: Implementing the design process: 

The design process should be realized in conjunction with to design plan within any focus to 

eliminate non-value-added costs through design stages. 

Step 11: Predicting & determining the cost of manufacturing of a designed product/ previous 

products made of the similar design: 

Cost of design data and cost of manufacturing data is collected through the design and 

manufacturing processes. The cost of raw material could be excluded of these data because the Cost of 

materials is very different for different products. Accurate recording of design and manufacturing cost 

data is very effective in subsequent analyzes, and this data may be generated from an operational design 

and manufacturing process or a process of predicting and feasibility design and manufacturing. 

Step 12: Converting manufacturing costs to suitable fuzzy data: 

Since manufacturing costs are not always accurate during the design process, manufacturing cost 

data is converted to fuzzy data by mentioned fuzzy sets and suitable membership functions. 
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Step 13: Determining the function of predicting manufacturing cost based on design cost: 

When numerical design data and fuzzy manufacturing data are generated into an appropriate 

number and acceptable accuracy in a product or collection, with known statistical method, the function 

of predicting manufacturing cost based on design cost or estimated design cost could be found by using 

the regression equation method. The value of the dependent variable for different values of the 

independent variable is estimated by the regression line. In order to estimate the appropriate factors 

for the model, an attempt is made to select the model that has the least error based on the available 

data. 

This manufacturing prediction function can be considered as basic criteria in design methodology 

for manufacturing, which is the concern of most organizations. 

Step 14: Manufacturing: 

After estimating the manufacturing cost based on the function obtained from the previous stage and 

being acceptable, the manufacturing implementation can be started. 

3. Results 

In this section, to illustrate the performance of the design cost estimation to determine or predict 

the manufacturing cost, an attempt is made to use tangible numerical examples or illustrative examples 

and the results of these steps are analyzed and discussed Without any emphasis on the type of methods 

used such as Shannon entropy, Taguchi, etc. 

For the determination of the MPP and PDP, Table 2 shows an illustrative example of steps 1 and 2 

data with a simple calculation for three types of manufacturing i.e. Refrigerators, Hydraulic Cylinder 

and Waste Containers (sample industry). The target cost of the design (TCD) is calculated according to 

step 3. 

Table (2): MPP and PDP cost data by market survey & total costs by feasibility study 

Product No. ($)MPP ($)PDP ($)MPP-

PDP 

($) Total Cost of 

mfg., material & 

overhead material 

 

($)TCD 

Stationary & hyd. cylinder 2 

tone 

20 2 18 17 18-17=1 

Stationary & hyd. cylinder 5 

tone 

28 3 25 24 25-24=1 

Stationary & hyd. cylinder 

10 tone 

32 3 29 27 29-27=2 

Stationary & hyd. cylinder 

15 tone 

37 4 33 31 33-31=2 

Stationary & hyd. cylinder 

20 tone 

40 4 36 34 36-34=2 

At the stage 4, the best performance conditions could be validated by using Taguchi method (Zhang 

et al. 2009; Parameshwaranpillai et al. 2011). In this situation for example, it will get 2 factors (DRC& 
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PDP) with two levels, it will be 4 experiments and the Taguchi’s method introduces L4. Recording of 

trial conditions for the above definition are shown in Table 3. 

Table (3): Description of the trial Condition (Taguchi L4) 

Trial Condition Factors Level Description: 

0<Low≪0.3     0.3<Medium≪0.7        

0.7<High≪1 

Level # 

1 PDP Medium 1 

DRC Low 1 

2 PDP High 2 

DRC Medium 2 

3 PDP Medium 1 

DRC Medium 2 

4 PDP High 2 

DRC Low 1 

In order to better illustrate, we have defined the low, medium and high operating ranges in the 

range of zero and one as follows: Low (0, 0.3], Medium (0.3, 0.7], High (0.7, 1]  

Results of Taguchi’s method (Table 4) shows the best S/N ratio is in nominal QC type for trial#3. 

Which means The Profit designed product (PDP) & Design real cost (DRC) should be in high range or 

the more cost-effective the design is, the more successful the product is in sales and profit. 

Table (4): Results of the analyzed QC Types 

QC Type Conditions Sample#1 Sample#2 Sample#3 S/N Ratio Average 

 

Bigger 

Trial #1: 0.7 0.7 0.1 -15.403  

-6.7405 Trial #2: 0.8 1 0.8 -1.384 

Trial #3: 1 0.9 0.9 -0.632 

Trial #4: 1 1 0.2 -9.543 

 

 

Smaller 

Trial #1: 0.7 0.7 0.1 4.814  

 

2.06675 

Trial #2: 0.8 1 0.8 1.191 

Trial #3: 1 0.9 0.9 0.588 

Trial #4: 1 1 0.2 1.674 
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nominal 

Trial #1: 0.7 0.7 0.1 9.208  

 

14.8595 

Trial #2: 0.8 1 0.8 18.75 

Trial #3: 1 0.9 0.9 24.771 

Trial #4: 1 1 0.2 6.709 

In step 5, all the effective factors of the design cost were defined, and in order to introduce an 

illustrative numerical example, we first present the factors that can be used according to step 6, using 

the average score of the three independent design groups (Table 5), and then return to step 5. These 

data are based on a simple scoring method between 1 to 10, which means that the score moves from 

point one to point ten, the usability decreases. 

Table (5): Average score on the gathered data from 7 independent designer groups 

Inputs CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 

1 6 2 8 3 5 6 7 3 4 2 3 5 5 3 

2 7 2 5 4 4 4 5 2 3 2 2 6 4 3 

3 7 1 6 2 3 4 4 2 4 1 2 4 6 4 

4 8 2 8 3 5 6 7 3 5 2 3 5 5 5 

5 6 3 6 3 4 6 6 3 4 3 2 4 4 5 

6 5 1 5 4 5 7 7 4 3 2 3 5 4 3 

7 7 1 6 3 4 6 6 2 2 1 2 7 5 4 

It is needed to specify the usability factor for each factor by using a matrix with (m) rows (number 

of options) and (n) columns (number of indicators/factors). Each element of this matrix; 𝑥𝑖𝑗 is called as 

decision-making matrix data  and the data matrix values have been normalized using equation 1  and 

the entropy of the probability distribution; 𝐸𝑖𝑗  has been calculated. After calculating the degree of 

deviation 𝑑𝑗, the weight rate has been specified. The level of the construct’s approximating to the 

optimum condition may be presented as a level of the construct’s entropy which is evaluated by using 

Shannon’s methodology (Ghasemzadeh et al. 2018) Lowering the entropy level gets the construct’s 

conditions closer to the optimum and formulated by equation.  

𝑃𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 ; 𝑗 = 1,2, … , 𝑛                                                           (1) 

𝐸𝑗 = − [
1

𝐿𝑛 (𝑚)
] ∗ ∑ (𝑃𝑖𝑗 × 𝐿𝑛 𝑃𝑖𝑗)𝑚

𝑖 ; 𝑖 = 1,2, … , 𝑚                      (2)      

𝑑𝑗 = 1 − 𝐸𝑗                                                                                        (3) 

𝑊𝑗 =
𝑑𝑗

∑ 𝑑𝑗𝑛
𝑗=1

                                                                                        (4) 
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Table(6): Calculations of the usability of CFs by Shannon's entropy  

Cost 

Factors 

CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 

SUM 46 12 44 22 30 39 42 19 25 13 17 36 33 27 

P1j 0.13

0 

0.16

7 

0.18

2 

0.13

6 

0.167 0.15

4 

0.16

7 

0.15

8 

0.16 0.15

4 

0.17

6 

0.13

9 

0.15

2 

0.11

1 P2j 0.15

2 

0.16

7 

0.11

4 

0.18

2 

0.133 0.10

3 

0.11

9 

0.10

5 

0.12 0.15

4 

0.11

8 

0.16

7 

0.12

1 

0.11

1 P3j 0.15

2 

0.08

3 

0.13

6 

0.09

1 

0.1 0.10

3 

0.09

5 

0.10

5 

0.16 0.07

7 

0.11

8 

0.11

1 

0.18

2 

0.14

8 P4j 0.17

4 

0.16

7 

0.18

2 

0.13

6 

0.167 0.15

4 

0.16

7 

0.15

8 

0.2 0.15

4 

0.17

7 

0.13

9 

0.15

2 

0.18

5 P5j 0.13

0 

0.25 0.13

6 

0.13

6 

0.133 0.15

4 

0.14

3 

0.15

8 

0.16 0.23

1 

0.11

8 

0.11

1 

0.12

1 

0.18

5 P6j 0.10

9 

0.08

3 

0.11

4 

0.18

2 

0.167 0.17

9 

0.16

7 

0.21

1 

0.12 0.15

4 

0.17

6 

0.13

9 

0.12

1 

0.11

1 P7j 0.15

2 

0.08

3 

0.13

6 

0.13

6 

0.133 0.15

4 

0.14

3 

0.10

5 

0.08 0.07

7 

0.11

8 

0.19

4 

0.15

2 

0.14

8 E j 0.99

5 

0.95

8 

0.99

1 

0.98

9 

0.993 0.99

0 

0.99

1 

0.98

3 

0.983 0.96

9 

0.98

9 

0.99

1 

0.99

4 

0.98

8 dj 0.00

5 

0.04

2 

0.00

9 

0.01

1 

0.007

0 

0.01 0.00

9 

0.01

7 

0.017 0.03

1 

0.01

1 

0.00

9 

0.00

6 

0.01

2 Wj 0.02

5 

0.21

7 

0.04

4 

0.05

6 

0.036 0.04

9 

0.04

4 

0.08

6 

0.088

4 

0.16

1 

0.05

4 

0.04

8 

0.02

9 

0.06

1  

The last row of Table 6 (Wj) is shown as percentage in Table 7 and used for ranking of cost factors, 

in which shows that the cost factors 2, 8, 9&10 have the most impact or importance in comparison with 

other factors. This means that approximately 20% of the cost factors estimate 80% of the design cost. 

Table (7): Ranking of Cost factors based on usability 

Cost 

Factors 

CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 

%W 2 22 4 6 4 5 4 9 9 16 5 5 3 6 

Rank 14 1 11 6 12 8 10 4 3 2 5 9 13 5 

 

In step 7, the design cost of a stationary hydraulic cylinder (Jack) at different tonnages is provided 

in Table 8 by illustrative example. 

Table (8): The CF’s data of the Stationary & Hydraulic Cylinder in different capacities 

Cost 

Factor

s ($) 

CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 CF11 CF12 CF13 CF14 

2 Ton 196 3920 539 1392 343 882 578 2450 2548 2871 902 735 270 1568 
5 Ton 196 3920 539 1392 343 882 578 2450 2548 2871 902 735 270 1568 

10 Ton 200 4000 550 1420 350 900 590 2500 2600 2930 920 750 275 1600 
15 Ton 218 4360 600 1548 382 981 843 2725 2834 3194 1003 818 300 1744 
20 Ton 228 4560 627 1620 399 1026 673 2850 2964 3340 1049 855 314 1824 

 

The data of Table 8 should be specified for each part of hydraulic cylinders exactly as following Table 

9.  
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Table (9): The DRC’s data of the Stationary & Hydraulic Cylinder in different capacities 
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2 Ton 222

8 

1302 1508 161

1 

1851 116

5 

960 925 994 89

1 

13

71 

960 1337 126

8 

823 
5 Ton 222

8 

1302 1508 161

1 

1851 116

5 

960 925 994 89

1 

13

71 

960 1337 126

8 

823 
10 

Ton 

229

5 

1441 1574 146

8 

1921 120

1 

987 961 961 93

4 

13

34 

1014 1307 133

4 

854 

15 

Ton 

243

7 

1539 1642 153

9 

2052 128

3 

105

2 

102

6 

1026 10

52 

14

37 

1180 1411 174

5 

112

9 20 

Ton 

243

9 

1550 1651 155

0 

2032 132

1 

106

7 

106

7 

1042 10

92 

14

48 

1194 1423 172

7 

172

7  

Table 10 has been formed by TCD (the last column of Table 2) and DRC (the sum of rounded values 

of Table 9 in accordance to steps 8 and 9 in which the difference of these amounts are positive showing 

the design implementation could be done according to step 10; since the design process is affordable.  

 

Table (10): TCD & DRC data for comparison and decision making to start the design process 

Product type ($) Target cost of design (TCD)*20000 ($) Design real cost (DRC) ($) TCD-DRC 

2 Ton 20000 19000 1000 

5 Ton 20000 19000 1000 

10 Ton 40000 20000 20000 

15 Ton 40000 22000 18000 

20 Ton 40000 23000 17000 

 

When the amount of the 4th column of the Table 10 is positive, the implementation of design will 

be affordable and the design process could be started. The results are shown that implementation of 

design will be more economic when the capacity of the hydraulic jack is high. 

 As mentioned in step 11, at this stage, the numerical data related to the manufacturing (mfg.) cost 

are determined or predicted in the same structure as the design cost in Table 11.  
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Table (11): The Mfg. cost’s data for Stationary & Hydraulic Cylinder in different capacities 
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2 Ton 3.3 0.27 0.25 1.1 0.15 0.11 0.14 0.5 0.3 0.2 0.17 0.12 0.5 0.65 0.15 

5 Ton 3.6 0.30 0.26 1.2 0.17 0.12 0.15 0.5 0.4 0.23 0.2 0.13 0.5 0.75 0.17 

10 

Ton 

4.4 0.33 0.33 1.3 0.21 0.14 0.18 0.6 0.5 0.27 0.2 0.15 0.6 0.88 0.19 

15 

Ton 

4.9 0.37 0.35 1.5 0.25 0.15 0.2 0.9 0.55 0.32 0.25 0.19 1 1.2 0.25 

20 

Ton 

5 0.38 0.36 1.5 0.25 0.16 0.2 1 0.6 0.35 0.3 0.19 1 1.2 1.2 

Since manufacturing costs are not always accurate during the design process, manufacturing cost 

data is converted to fuzzy data by triangle membership functions. The Fuzzy set and membership 

functions are shown in Table 12.  

Table (12): Fuzzy sets and membership functions 

Triangle (Min, Mode, Max) Scope Membership Function Fuzzy Set 

(𝟑. 𝟕𝟓, 𝟓, 𝟓) 3.75 ≤ 𝑥 ≤ 5 𝑈(𝑥) = (𝑥 − 3.75)  (5 − 3.75)⁄  Very High 
(𝟐. 𝟓, 𝟑. 𝟕𝟓, 𝟓) 2.5 ≤ 𝑥 ≤ 3.75 

3.75 ≤ 𝑥 ≤ 5 
𝑈(𝑥) = (𝑥 − 2.5)  (3.75 − 2.5)⁄  

𝑈(𝑥) = (5 − 𝑥)  (5 − 3.75)⁄  
 

High 

(𝟏. 𝟐𝟓, 𝟐. 𝟓, 𝟑. 𝟕𝟓) 1.25 ≤ 𝑥 ≤ 2.5 
2.5 ≤ 𝑥 ≤ 3.75 

 

𝑈(𝑥) = (𝑥 − 1.25) (2.5 − 1.25)⁄  
 

𝑈(𝑥) = (3.75 − 𝑥) (3.75 − 2.5)⁄  

Medium 

(𝟎, 𝟏. 𝟐𝟓, 𝟐. 𝟓) 0 ≤ 𝑥 ≤ 1.25 
1.25 ≤ 𝑥 ≤ 2.5 

 

𝑈(𝑥) = (𝑥 − 0) (1.25 − 0)⁄  
 

𝑈(𝑥) = (2.5 − 𝑥) (2.5 − 1.25)⁄  
 

Low 

(𝟎, 𝟎, 𝟏. 𝟐𝟓) 0 ≤ 𝑥 ≤ 1.25 
 

𝑈(𝑥) = (1.25 − 𝑥) (1.25 − 0)⁄  
 

Very Low 

In this part, the data on manufacturing costs have been converted to fuzzy data and fuzzy data have 

been specified in Table 13 as illustrative fuzzy example. In the following, with the help of this example, 

we will analyze fuzzy regression and validate the results for further transparency. 
 

Table (13): Lingual terms and equal fuzzy sets for manufacturing cost for stationary and hydraulic cylinder 

Part 

Number 

Design 

cost 

Fuzzy set 

Mfg. 

Triangle 

Fuzzy  Mfg. 

set 

Part 

Number 

Design 

cost 

Fuzzy set 

Mfg. 

Triangle 

Fuzzy  Mfg. 

set 1 2228 High (2.5,3.75,5) 39 1026 Very Low (0,0,1.25) 
2 2228 High (2.5,3.75,5) 40 1067 Low (0,1.25,2.5) 
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3 2295 Very High (3.75,5,5) 41 994 Very Low (0,0,1.25) 
4 2437 Very High (3.75,5,5) 42 994 Very Low (0,0,1.25) 
5 2439 Very High (3.75,5,5) 43 961 Very Low (0,0,1.25) 
6 1302 Very Low (2.5,3.75,5) 44 1026 Very Low (0,0,1.25) 
7 1302 Very Low (0,0,1.25) 45 1042 Very Low (0,0,1.25) 
8 1441 Very Low (0,0,1.25) 46 891 Very Low (0,0,1.25) 
9 1539 Very Low (0,0,1.25) 47 891 Very Low (0,0,1.25) 
10 1550 Very Low (0,0,1.25) 48 934 Very Low (0,0,1.25) 
11 1508 Very Low (0,0,1.25) 49 1052 Very Low (0,0,1.25) 
12 1508 Very Low (0,0,1.25) 50 1092 Very Low (0,0,1.25) 
13 1574 Very Low (0,0,1.25) 51 1371 Very Low (0,0,1.25) 
14 1642 Very Low (0,0,1.25) 52 1371 Very Low (0,0,1.25) 
15 1651 Very Low (0,0,1.25) 53 1334 Very Low (0,0,1.25) 
16 1611 Low (0,1.25,2.5) 54 1437 Very Low (0,0,1.25) 
17 1611 Low (0,1.25,2.5) 55 1448 Very Low (0,0,1.25) 
18 1468 Low (0,1.25,2.5) 56 960 Very Low (0,0,1.25) 
19 1539 Low (0,1.25,2.5) 57 960 Very Low (0,0,1.25) 
20 1550 Low (0,1.25,2.5) 58 1014 Very Low (0,0,1.25) 
21 1851 Very Low (0,0,1.25) 59 1180 Very Low (0,0,1.25) 
22 1851 Very Low (0,0,1.25) 60 1194 Very Low (0,0,1.25) 
23 1921 Very Low (0,0,1.25) 61 1337 Very Low (0,0,1.25) 
24 2052 Very Low (0,0,1.25) 62 1337 Very Low (0,0,1.25) 
25 2032 Very Low (0,0,1.25) 63 1307 Very Low (0,0,1.25) 
26 1165 Very Low (0,0,1.25) 64 1411 Low (0,1.25,2.5) 
27 1165 Very Low (0,0,1.25) 65 1423 Low (0,1.25,2.5) 
28 1201 Very Low (0,0,1.25) 66 1268 Very Low (0,0,1.25) 
29 1283 Very Low (0,0,1.25) 67 1268 Very Low (0,0,1.25) 
30 1321 Very Low (0,0,1.25) 68 1334 Very Low (0,0,1.25) 
31 960 Very Low (0,0,1.25) 69 1745 Low (0,1.25,2.5) 
32 960 Very Low (0,0,1.25) 70 1727 Low (0,1.25,2.5) 
33 987 Very Low (0,0,1.25) 71 823 Very Low (0,0,1.25) 
34 1052 Very Low (0,0,1.25) 72 823 Very Low (0,0,1.25) 
35 1067 Very Low (0,0,1.25) 73 854 Very Low (0,0,1.25) 
36 925 Very Low (0,0,1.25) 74 1129 Very Low (0,0,1.25) 
37 925 Very Low (0,0,1.25) 85 1727 Low (0,1.25,2.5) 
38 961 Very Low (0,0,1.25) - - - - 

 

4. Comparison, Validation & Accuracy Analysis 

After normalizing the design cost and mfg. cost of base part of hydraulic cylinder 2 ton in the 

1st column of the Tables 9 & 11, Fig. 2 is depic 
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Fig.2. Trend cost of the design and mfg. for the base part in different capacities. 

After studying the cost of design for hydraulic cylinders in a variety of capacities in Table 9, Fig. 3 

could be considered. 

 

   

 

 

 

 

 

Fig.3. Design cost of the hyd. cylinders with different capacities. 

The cost of manufacturing for hydraulic cylinders in a variety of capacities as given in Table 11, 

could be shown in Fig. 4. 
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Fig.4. Cost of manufacturing the hyd. cylinders with different capacities. 

The next figure shows the linear regression function of the manufacturing cost based on design cost 

for different capacities between 2-20 ton & it helps to facilitate of estimation the cost of manufacturing 

by design cost for higher capacities of hydraulic cylinders such as 25,30. 

Fig.5. Regression function of the mfg. cost based on design cost for different ton.  

The neuro-fuzzy hybrid system is a learning mechanism that utilizes the training and learning 

neural networks to find parameters of a fuzzy system based on the symptoms created by the 

mathematical model. Adaptive learning is an important characteristic of neural networks. Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is used for system identification based on the available data 

(Loganathan et al. 2013), this modeling approach is based on data classification and then applying 

activation functions or so-called membership functions. 
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The purpose of this is to move data from scalar space to a higher dimension so that data can be easily 

processed. One of the most important functions used in this field is the Gaussian activation function 

which gives good accuracy in modeling. In summary, the data is first given to the network and based 

on input and output it generates an elementary model by membership and clustering functions using 

the fuzzy clustering means (FCM). In the following, this basic model is optimized by a hybrid or error 

propagation algorithm, and we present the fuzzy and final learning model. The data presented after 

sorting and removing the additional columns have 4 columns (see the Table13, 1 of the columns is that 

design and another 3 columns are fuzzy mfg.)  As such, the first column being the input and the next 

three columns the output of the fuzzy model. The method is such that the data is first divided into two 

subsets by a random separator function.  

The first subset contains 85% of the data used to train fuzzy networks. The second subset contains 

15% of the data used for fuzzy model validation and testing. The fuzzy converter is therefore trained 

by 85% of the data and then tested with the remaining 15% to ensure the correct model performance. 

It is necessary to explain that the modeling process is performed 3 times to model all three outputs with 

the input of the first column. Inputs are the design’s costs and outputs are manufacturing’s cost.  

Results of analysis have been drawn for 3 variable outputs such as coefficient of determination(R), 

R squared (R2), mean squared error (MSE), root mean squared error (RMSE) and mean absolute error 

(MAE) in Table 14. 

Table (14): ANFIS Parameters for three variable parameters 

ANFIS Parameters Variable 1 Variable 2 Variable 3 

R2 0.6987 0.8781 0.491 

R 0.836 0.937 0.701 

MSE 8.2 

 

1.2 

 

2273.5 

 

RMSE 2.86 1.09 47.7 

MAE 0.33 0.13 5.51 
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Fig.6. Mfg. regression function variable output 1 

 

Fig. 7. Mfg. cost regression function Variable output 2 

Fig. 8. Mfg. cost regression function Variable output 3 
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The coefficient R2 indicates the dominance of the model in estimating the output data .Therefore, 

by studying the coefficient of R2, in Table 14, it is specified that variables 2 is acceptable because it 

has a lower error rate so. 

5. Conclusion 

The proposed model presented is a scientific and practical one that has high applicability in 

designing and manufacturing organizations also it is applicable for making a factual decision in a design 

for the manufacturing process and it provides monitoring applied dashboard for managing, controlling 

and improving desired results of the design process.  

We have developed a comprehensive method for determining cost- effective factors during the 

design and development process to predict and realize the real cost of design (DRC) in the framework 

of the target cost of design (TCD) and have evolved it with the suitable method for ranking and 

selecting effective applicable factors. These cost factors can help improve the integrity of the design 

and improve the performance of the designers as criteria for the design process. 

The real cost of design also enables companies to evaluate the future of the designed product form 

(features, types, complexities, characteristics, and limitations). Design cost is a key feature of 

determining the final product's selling price and achieving profit in a competitive market.  One of the 

most important things to pay attention to is that in this way the designed product can be considered as 

a final product to be delivered, meaning that this method will be applied to solely designer companies. 

Another benefit of this approach is that to reduce the cost of manufacturing, which is one of the most 

important issues of an organization today, it is necessary to rely on the design cost, and by focusing on 

design cost centers, organizations can achieve an effective design to reduce manufacturing costs. This 

achievement can enable design and manufacturing organizations to consider the cost of design and 

manufacturing as one of the key criteria in DFM’s evaluation method for their products. This method 

allows designers to choose the best design at affordable costs from the proposed designs and it can be a 

mechanism for deciding cost-based design.it is a novel fuzzy approach to predict manufacturing cost 

based on optimal design cost that is adaptable to the nature of different design and manufacturing 

organizations. Also, studying the cost and value of the design for the manufacturing process based on 

measuring cost efficiency can be considered in further researches as its productivity indicator. 
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