Nitrate reductase enzyme in Escherichia coli and its relationship with the synthesis of silver nano particles

Authors

  • Bahareh Khodashenas Shahrood Branch, Islamic Azad University

DOI:

https://doi.org/10.24200/jrset.vol3iss01pp26-32

Abstract

Nanostructure materials have attracted a great deal of attention because of their potential for achieving specific processes and selectivity, especially in biological and pharmaceutical applications. Of all kinds of metal nanoparticles, synthesis of silver nanoparticles is of considerable interest due to their wide range of applications in different fields. Chemical, physical and biological methods have been introduced for the synthesis of these nano particles. Offering reliable and eco-friendly processes for silver nanoparticles. Escherichia coli  bacteria is one of the earliest bacteria for this purpose. Studies showed that generally the presence of  nitrate reductase enzyme is essential for the biosynthesis of silver nanoparticles using bacteria. Therefore, this enzyme and its relationship with the synthesis of silver nanoparticles have been studied in the present research work. biological synthesis of metallic nanoparticles (using microorganisms) is an important step in nano biotechnology. So far, different kinds of bacteria have been reported to be used for synthesis of

References

Faramarzi, M., and Forootanfar, H., “Biosynthesis Characterization and of Gold Nanoparticles Produced by Laccase from Paraconiothyrium variabile”, Colloids and Surfaces B: Biointerfaces, 2011, 87(1), ,23-27. doi: 10.1016 /j.cols urfb.2011. 0 4.022.

Klaus, T., Joerger, R., Olsson, E., and Granqvist, C.G., Bacteria as Workers in the Living Factory: Metal Accumulating Bacteria and their Potential for Materials Science, Trends in Biotechnology, 2001, 19(1),15-20. DOI: http://dx.doi.org/10.1016/S0167-7799(00)01514-6

Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S., and Michailidis, N., “Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract”, Materials Letters, 2012, 76,18–20.

Jeon, H.J., Yi, S.C., and Oh, S.G., “Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel- method, Biomaterials”, 2003, 24(27), 4921-4928.

Lue, J.T., “A review characterization and physical property studies of metallic nanoparticles”, Journal of Physics and Chemistry of Solids, 2001, 62,1599-1612. http://dx.doi.org/10.1016/S0022-3697(01)00099-3

Ghorbani, H. R., Safekordi,A.A., Attar ,H., and Rezayat Sorkhabadi, S. M., “Biological and Nonbiological Methods for Silver Nanoparticles Synthesis”, Chemical and Biochemical Engineering Quarterly, 2011, 25 (3) ,317–326.

Li ,S., Shen ,Y., Xie, A., Yu, X., Qui ,L., Zhang ,L., and Zhang, Q., “Green synthesis of silver nanoparticles using Capsicum annuum L. extract”, Green Chemistry , 2007, 9, 852-858. DOI: 10.1039/ B615357 G

Kalimuthu, K., Babu ,R.S., Venkataraman, D., Mohd, B., and Gurunathan, S., “Biosynthesis of silver nanocrystals by Bacillus licheniformis”, Colloids and Surfaces B: Biointerfaces, 2008, 65,150–153.

Berks, B. C., Ferguson, S. J., Moir,J. W. B., and Richardson ,D. J., “Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions”, Biochimica et Biophysica Acta (BBA), 1995, 1232(3),97–173.

Unden, G., and Bongaerts, J., “Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors”, Biochim. Biophys. Acta , 1997, 1320,217–234

Moreno-Vivián, C., and Ferguson, S. J., “Definition and distinction between assimilatory, dissimilatory and respiratory pathways”. Mol. Microbiol. 1998, 29,664–666.

Morozkina, E. V., and Zvyagilskaya, R. A., “Nitrate Reductases: Structure, Functions, and Effect of Stress Factors”, Biochemistry (Moscow), 2007, 72(10),11511160. DOI: 10.1134 /S000 6297 907100124.

Fischer ,K., Barbier, G .G., Hecht, H .J., Mendel, R. R., Campbell, W. H. and Schwarz, G., “Structural Basis of Eukaryotic Nitrate Reduction: Crystal Structures of the Nitrate Reductase Active Site”, The Plant Cell, 2005, 17,,1167-1179.

Viva´n ,C M., Cabello, P., Luque, M M., Blasco, R., and Castillo, F., “Prokaryotic Nitrate Reduction: Molecular Properties and Functional Distinction among Bacterial Nitrate Reductases”, J Bacteriol, 1999, 181,6573-6584,.

Maier, M., and Pepper, I ., “Environmental Microbiology Arizona State”, Academic Press., 2000, 2,491-493.

Bonnefoy ,V., Demoss ,J.A., “Nitrate reductases in Escherichia coli”, Antonie Van Leeuwenhoek, 1994, 66(1-3),47-56.

Taniguchi, S., and Itagaki, E., “Nitrate reductase of nitrate respiration type from E. coli. I. Solubilization and purification from the particulate system with molecular characterization as a metalloprotein”, Biochim. Biophys. Acta, 1960, 4(44), 263-279.

Taniguchi, S., Sato, R., and Egami, F., In A Symposium on Inorganic Nitrogen Metabolism, p. 87. Ed. by McElroy, W. D. & Glass, B. Baltimore: Johns Hopkins Press, 1956.

Blasco ,F., Iobbi, C., Ratouchniak ,J., Bonnefoy ,V., and Chippaux ,M., “Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon”, Mol Gen Genet, 1990, 222(1),104-111,.

Nilavongse, A., Brondijk ,T.H., Overton ,T.W., Richardson, D.J., Leach ,E.R., and Cole, J.A., “The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA”, Microbiology, 2006, 152(11),3227-3237.doi: 10.1099/ mic .0. 29 157-0

Chang, L., Wei ,L.I., Audia ,J.P., Morton ,R.A., and Schellhorn, H.E., “Expression of the Escherichia coli NRZ nitrate reductase is highly growth phase dependent and is controlled by RpoS, the alternative vegetative sigma factor”, Mol Microbiol., 1999, 34(4),756-766.

Blasco ,F., Pommier, J., Augier ,V., Chippaux M., and Giordano, G., “Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli”., Mol Microbiol., 1992, 6(2),221-230.

Rothery, R.A., Blasco, F., Magalon, A., Asso, M., and Weiner ,J.H., “The hemes of Escherichia coli nitrate reductase A (NarGHI): potentiometric effects of inhibitor binding to narI”., Biochemistry, 1999, 38(39),1274712757.

Dubourdieu ,M., and DeMoss, J.A., “The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli”., J Bacteriol., 1992, 174(3),867-872.

Stewart V., “Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12”., J Bacteriol. , 1982, 151(3),1320-1325.

Blasco ,F., Dos Santos ,J.P., Magalon ,A., Frixon, C., Guigliarelli, B., Santini, C.L., and Giordano ,G., “NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli”., Mol Microbiol. , 1998, 28(3), 435-447.

Potter, L.C., Millington ,P., Griffiths, L., Thomas ,G.H., and Cole, J.A., “Competition between Escherichia coli strains expressing either a periplasmic or a membranebound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?”, Biochem J., 1999, 344(1),77-84.

Brondijk, T.H., Nilavongse ,A., Filenko, N., Richardson ,D.J., Cole, J.A., “NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing”, Biochem J. , 2004, 379(1),47-55.

Brondijk, T.H., Fiegen, D., Richardson, D.J., and Cole ,J.A., “Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase in ubiquinol oxidation”, Mol Microbiol, 2002, 44(1),245-255.

Potter, L.C., and Cole ,J.A., “Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12”, Biochem J. , 1999, 344 (1),69-76.

Forget, P., “The Bacterial Nitrate Reductases. Solubilization, Purification and Properties of the Enzyme A of Escherichia coli K12”, Eur J Biochem 1974 ,42(2), ,325-332.

Enoch, H.G., and Lester, R.L., “The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli”, J. Biol. Chem., 1975, 250,6693 -6705.

Bertero ,M.G., Rothery ,R.A., Palak, M., Hou, C., Lim ,D., Blasco , F., Weiner ,J.H., and Strynadka ,N.C., “Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A”, Nat. Struct. Biol. , 2003, 10 (9),681–687. doi:10.1038/nsb969.

Raveendran,P. Fu,J., and Wallen,S.L., “Completely "green" synthesis and stabilization of metal nanoparticles”, J. Am. Chem. Soc., 2003, 125(46) ,13940–13941.

Sharma, V.K., Ria, A., and Lin,Y.Y., “Silver nanoparticles: green synthesis and their antimicrobial activities”, Adv. Colloid Interface Sci. 2009, 145(1-2) ,83–96.doi: 10.1016/j.cis.2008.09.002.

Joerger, R., Klaus, T., and Granqvist, C. G., “Biologically produced silver-carbon composite materials for optically functional thin-film coatings”, Adv. Mater. , 2000, 12, 407-409.

Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., and Nohi, A., “Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach”,Process Biochem. ,2007, 42 ,919923.

Lee, S. Y., “High cell-density culture of Escherichia coli”., Trends Biotechnol., 1996, 14 (3),98-105.

Shehata, T. E., and Marr, A. G., “Effect of nutrient concentration on the growth of Escherichia coli” , J. Bacteriol, 1971, 107(1) ,210-216.

Kumar, S.A., Abyaneh,M.K. Gosavi, S.W., Kulkarni,S.K. ,Pasricha, R., Ahmad, A., and Khan ,M.I., “Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3”, Biotechnol. Lett., 2007, 29 ,439– 445.

Fu ,J.K., Zhang, W.D., Liu, Y.Y., Lin ,Z.Y., Yao, B.X. and Weng, S.Z., “Characterization of adsorption and reduction of noble metal ions by bacteria”, Chin J Chem Univ , 1999, 20,1452–1454.

Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., and Sangiliyandi, G., “Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformisMater”, Lett., 2008, 62 , 4411-4413.

Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., and Deng, X., “Biosorption and bioreduction of diamine silver complex by Corynebacterium”, J Chem Technol Biotechnol, 2005, 80,,285–290.

Saifuddin ,N., Wong ,C.W., and Nur yasumira ,A.A., “Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation”., Eur J Chem , 2009, 6,61–67.

Parikh, R.Y., Singh, S., Prasad ,B.L., Patole ,M.S., Sastry ,M., and Shouche, Y.S., “Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella. sp.: towards understanding biochemical synthesis mechanism”., Chembiochem, 2008, 9,1415–1422.

Nanda ,A. and Saravanan ,M., “Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE”, Nanomedicine , 2009, 5(4),452–456.

Published

2019-09-13

Issue

Section

Articles