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 The main aim of this paper is to apply non-negative matrix factorization to build a recommender system. In 
a recommender system there are a group of users that rate to a set of items. These ratings can be represented 
by a rating matrix. The main problem is to estimate the unknown ratings and then predict the interests of the 
users to the items which haven’t rated. The main innovation of this paper is to propose a new algorithm to 
compute matrix factorization in a way that the factorized matrixes would be a good approximation for the 
initial rating matrix and moreover would be a good source to predict the unknown ratings of the items 
precisely. The results show that the proposed matrix factorization improves the estimated ratings 
considerably. 
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1. INTRODUCTION 
Modern consumers are flooded with choices. Electronic 
vendors offer a huge selection of products, with 
extraordinary opportunities to meet a variety of special 
needs and tastes. Matching consumers with the most 
appropriate products is important to enhancing user 
satisfaction. Therefore, more retailers have become 
interested in recommender systems, which analyze 
patterns of user interest in products to provide 
personalized recommendations that suit a user’s taste. 
Because good personalized recommendations can add 
another dimension to the user experience, e-commerce 
leaders like Amazon.com and Netflix have made 
recommender systems a salient part of their websites. 
Such systems are particularly useful for entertainment 
products such as movies, music, and TV shows. Many 
customers will view the same movie, and each customer 
is likely to view numerous different movies. Customers 
have proven willing to indicate their level of satisfaction 
with particular movies, so a huge volume of data is 
available about which movies appeal to which customers. 
Companies can analyze this data to recommend movies to 
particular customers. 
Broadly speaking, recommender systems are based on one 
of two strategies: content filtering and collaborative 
filtering.  The content filtering approach creates a profile 
for each user or product to characterize its nature. The 
profiles allow programs to associate users with matching 
products.  
An alternative to content filtering relies only on past user 
behavior—for example, previous transactions or product 
ratings—without requiring the creation of explicit 
profiles. This approach is known as collaborative 
filtering. Collaborative filtering analyzes relationships 
between users and interdependencies among products to 
identify new user-item associations. 

A major appeal of collaborative filtering is that it is 
domain free, yet it can address data aspects that are often 
indescribable and difficult to profile using content 
filtering. While generally more accurate than content-
based techniques, collaborative filtering suffers from what 
is called the cold start problem, due to its inability to 
address the system’s new products and users. In this 
aspect, content filtering is superior. 
The two primary areas of collaborative filtering are the 
neighborhood methods and latent factor models. 
Neighborhood methods are centered on computing the 
relationships between items or, alternatively, between 
users. The item oriented approach evaluates a user’s 
preference for an item based on ratings of “neighboring” 
items by the same user. A product’s neighbors are other 
products that tend to get similar ratings when rated by the 
same user.  
Latent factor models are an alternative approach that tries 
to explain the ratings by characterizing both items and 
users on factors inferred from the ratings patterns.  
 
1.1. Application of NMF in recommender systems 
NMF can be used to decompose the rating matrix to two 
factors which can represent the group of similar users and 
similar items [1]. To recommend an item to a special user, 
the interesting of the similar users can be used. For 
example consider Figure 1 that shows 6 users and 6 
books. The ratings of users to items are represented by a 
matrix. 
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Figure 1. Application of NMF in collaborative filtering 
 
In this example we have 3 features (k=3) and these 
features can be related to users or items (books). Assume 
that we have to estimate the rating that user 1 gives to 
item 3. At first, the rating matrix is decomposed using 
NMF. By this factorization, the group of similar users to 
user 1 will be determined. As shown in Figure 1, users 1, 
2 and 3 have similar ratings so they can be considered in a 
group and users 4 and 5 are considered in a group and 
similarly user 6 is in another group. Each row of the first 
factorization matrix represents that the corresponding user 
belongs to which group. In other words, each row of the 
first factorization matrix shows which feature is more 
important for the corresponding user. Each column of 
second factorization matrix shows that the corresponding 
book is more important for which group. In other words, 
which feature of the corresponding book is more 
important for users. So if the first row of the first 
factorization matrix would multiplied by the third column 
of the second factorization matrix, the result reveals that if 
the third book has which features that are important for 
user 1. 
 
1.2. Proposed Approach 
The aim is to find non-negative matrixes W and H in such 
a way that the equation (1) is satisfied: 
ܣ ≅ ܪܹ =  መ                                                          (1)ܣ
Each row of matrix W represents the correlation between 
the corresponding user and the features (groups) detected 
by the factorization method. Also, each column of matrix 
H represents the correlation between groups and the 
corresponding items [2]. In another word, considering the 
݅th row of matirx W which has ݇ elements and each 
element is representative of a group, if the ݈th element of 
the row is the largest one among the other elements of this 
row then the probability that user ݅ is related to group ݈ is 
larger. In addition, considering the ݆th column of matrix H 
which has ݇ elements and each element is representative 
of a group, if the ݈th elemnt of this column is the largest 
one among the other elements of the column then it is 
more probable that group ݈ would be interested in item ݆ 
[3].  
Hence, to predict the score which user i will give to item 
j, we can compute the multiplication of row i of matrix W 
to column j of matrix H. let represent ith row of matrix W 
with  ௜ܹ   and jth column of matrix H with  ܪ௝ , then: 
ොܽ௜௝ = ௜ܹܪ௝ = ∑ ௜௟ℎ௟௝௞ݓ

௟ୀଵ                                         (2) 
The difference between the actual score and the estimated 
score is called estimation error [4]. Estimation error may 
be positive or negative according to which of the actual 
score or the estimated score is higher than the other. 
Therefore the square of the estimation error is computed 
to prevent the sign difference: 
݁௜௝ଶ = (ܽ௜௝ − ොܽ௜௝)ଶ = (ܽ௜௝ −∑ ௜௟ℎ௟௝௞ݓ

௟ୀଵ )ଶ              (3) 
In fact, minimizing the estimation error is commonly 
reformulated as the following optimization problem: 
݉݅݊ௐ,ு 	݂(ܹ, (ܪ = ଵ

ଶ
ܣ‖ ிଶ‖ܪܹ− =

ଵ
ଶ
∑ ∑ (ܽ௜௝ −௡

௝ୀଵ
௠
௜ୀଵ

∑ ௜௟ℎ௟௝௞ݓ
௟ୀଵ )ଶ 	 , .ݏ ,ܹ				.ݐ ܪ ≥ 0  (4) 

The main goal is to minimize the estimation error. To this 
end, it is essential to determine in which direction the 

values of ݓ௜௟ and ℎ௟௝  should be changed. In other words, it 
is nessessary  to compute the gradient of error according 
to  ݓ௜௟ and ℎ௟௝  and then inorder to provid KKT conditions 
to find the minimum value we should reduce the gradient 
in each iteration [5]. Therefore, we compute the partial 
derivation of error according to ݓ௜௟ and ℎ௟௝  as shown in 
raltions (5) and (6): 
డ௘೔ೕ

మ

డ௪೔೗
= −2൫ܽ௜௝ − ොܽ௜௝൯൫ℎ௟௝൯ = −2݁௜௝ℎ௟௝                  (5) 

డ௘೔ೕ
మ

డ௛೗ೕ
= −2൫ܽ௜௝ − ොܽ௜௝൯(ݓ௜௟) = −2݁௜௝ݓ௜௟                  (6) 

Now to find the update rules, a coefficient of the above 
expressions are applied to build an additive form of the 
update rules: 
෥௜௟ݓ = ௜௟ݓ +  ௜௝ℎ௟௝,                                              (7)݁ߙ2
ℎ෨௟௝ = ℎ௟௝ + ௜௟ݓ௜௝݁ߙ2 .                                              (8) 
By convergence of (W,H), the gradient becomes zero 
therefore KKT conditions are satisfied [6]. In this 
situation the algorithm is converged to a local minimum. 
Parameter ߙ	is a positive value which can be constant or 
can be updated during each iteration. Generally a little 
value is considered for this parameter otherwise the 
algorithm may miss the local minimum. 
 
1.3. Regularization 
During the iterations to minimize the estimation error, the 
value of the entries of the decomposed matrix may be 
increased that results in error enhancement in each 
iteration. To prevent the growth of the decomposed matrix 
entries inordinately, a coefficient of the Euclidean value 
of the row and column which the score prediction is based 
on them  is added up to the estimation error of the 
corresponding row and column. By this way, not only the 
growth of estimation error is controlled but also the 
growth of the decomposed matrix entries are limited [7]. 
Therefore we can rewrite the estimated error as the 
following formula:  
௜௝ଶܧ = (ܽ௜௝ −∑ ௜௟ℎ௟௝)௞ݓ

௟ୀଵ
ଶ + ߚ ቀ‖ ௜ܹ‖ଶ + ฮܪ௝ฮଶቁ =

(ܽ௜௝ − ∑ ௜௟ℎ௟௝)௞ݓ
௟ୀଵ

ଶ + ∑)ߚ ௜௟ݓ
ଶ +௞

௟ୀଵ ∑ ℎ௟௝ଶ ).௞
௟ୀଵ       (9) 

So the partial derivations can be recomputed as follow: 
డா೔ೕ

మ

డ௪೔೗
= −2݁௜௝ℎ௟௝ + ௜௟ݓߚ2 ,                                      (10) 

డா೔ೕ
మ

డ௛೗ೕ
= −2݁௜௝ݓ௜௟ + ℎ௟௝ߚ2 ,                                       (11) 

Therefore the update rules are defined as follow: 
෥௜௟ݓ = ௜௟ݓ + ൫݁௜௝ℎ௟௝ߙ2 +  ௜௟൯,                             (12)ݓߚ
ℎ෨௟௝ = ℎ௟௝ + ௜௟ݓ൫݁௜௝ߙ2 +  ℎ௟௝൯.                            (13)ߚ	
Usually in practice, parameter ߚ is set to value 0.01. 
Therefore, using the above update rules and an 
appropriate and small enough selection for the amount of 
parameter ߚ	, the update rules are applied until the 
estimation error would be decreased to a desirable amount 
of value. 
 
1.4. Stop Criterion 
Nearly all NMF algorithm implementations use a 
maximum number of iterations as stopping criteria [8]. 
However, a fixed number of iterations is not a 
mathematically appealing way to control the number of 
iterations executed. There are other choices to select as 
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stopping criterion. A way to select the stopping criterion 
is to compare the original matrix A with the estimated 
matrix ܣመ. The difference between the non zero elements 
of the original matrix and the corresponding elements in 
the estimated matrix should not exceed a special value. 
This limitation can be defined according to a special 
problem. In this paper, the total estimation error is 
considered as a factor to set the stopping criteria. The 
error square is computed as the following relation: 
௜௝ଶܧ = (ܽ௜௝ −∑ ௜௟ℎ௟௝)௞ݓ

௟ୀଵ
ଶ + ∑)ߚ ௜௟ݓ

ଶ +௞
௟ୀଵ ∑ ℎ௟௝ଶ ).௞

௟ୀଵ  (14) 
Now, if error is less than a predefined value (such as 
0.0001) then the algorithm stops an outputs the estimated 
matrix. 
 
1.5. Initialization 
To start the factorization algorithm, W and H matrixes 
should be initialized. Usually, a weak initial value (such 
as random initialization) causes a slow convergence and 
sometimes irrelevant and incorrect results. Although a 
suitable initialization does not necessarily guarantee 
algorithm convergence, it certainly reduces the number of 
iterations. The performance of NMF algorithm is affected 
by the initial value of the W and H matrixes. So it is 
important to use consistent and efficient methods to select 
initial value for matrixes. In this paper, a multiplicative 
update rule algorithm is applied. The algorithm 
transforms the initial random matrixes to an 
approximation of NMF and then uses this approximation 
as an initial value for matrixes W and H.   
 
1.6. Multiplicative update algorithm 
Multiplicative update algorithm is one of the most 
applicable algorithms for solving NMF problem [9]:  
ܹ = ,݉)݀݊ܽݎ ݇) 
ܪ = ,݇)݀݊ܽݎ ݊) 
݅	ݎ݋݂ = 1:  ݐ
ܪ = ∗.ܪ +ܪ்ܹܹ)/.(ܣ்ܹ) 10ିଽ) 
ܹ =ܹ.∗ ்ܪܪܹ)/.(்ܪܣ) + 10ିଽ) 
end 
 
The symbol ./ represents element by element division. In 
each iteration, the fraction is added by 10ିଽ	to prevent 
divide by zero. 
 
1.7. Convergence of the Multiplicative Update 
Algorithm to a Local Minimum 
If the initial matrixes W and H are strictly positive, then 
according to the update rules and by assumption that 
matrix A doesn’t have any zero row and column (if it has 
such row or columns, they can be removed without any 
damage to the problem), it is obvious that W and H 
remain positive in each iteration. If seqence (W,H) 
converges to (ܹ∗,  < and the conditions W > 0 and H (∗ܪ
0 are satisfied then following relations are confirmed: 
డ௙(ௐ∗ ,ு∗)

డு
= 0                                                          (15) 

డ௙(ௐ∗ ,ு∗)
డௐ

= 0                                                          (16) 
We prove the first relation and the second relation can be 
proved in a same way. The update rule for H can be 
rewriten as follows: 
ܪ = ܪ + ∗.[(ܪ்ܹܹ)/.ܪ] ܣ)்ܹ]  (17)        .[(ܪܹ−

Raltion (17) can be defined as follows: 
ܪ = ܪ + ∗.[(ܪ்ܹܹ)/.ܪ] ܣ)்ܹ]  [(ܪܹ−
= ܪ + [ܣ்ܹ∗.(ܪ்ܹܹ)/.ܪ] − .(ܪ்ܹܹ)/.ܪ]

 [ܪ்ܹܹ∗
= ܪ + [ܣ்ܹ∗.(ܪ்ܹܹ)/.ܪ] −  ܪ
=  (18)                                         ܣ்ܹ∗.(ܪ்ܹܹ)/.ܪ
Assume after each update, the resultant matrix H would 
be very close to the previous matrix H before update. In 
other words, assume that the matrix resulted from update 
would be a limitation point for the matrix before update 
and ܪ௜௝ > 0 then according to relation (18): 

ு೔ೕ
ൣௐ೅ௐு൧೔ೕ

൫[்ܹܣ]௜௝ − ௜௝൯[ܪ்ܹܹ] = 0                 (19) 

Because  ܪ௜௝ > 0 therefore: 
௜௝[ܣ்ܹ] =  ௜௝                                          (20)[ܪ்ܹܹ]
It means [డ௙

డு
]௜௝ = 0. Therefore when the sequence (W, H) 

converges to  (ܹ∗,ܪ∗) then H would be a limitation point 
for ܪ∗ from on step onwards [10][11]. On the other hand 
because the assumption of initial matrixes positiveness, 
for each i and j, ܪ௜௝ > 0 and [డ௙

డு
]௜௝ = 0. It means: 

డ௙
డு
= 0                                                                    (21) 

Obviously if the above partial derivations are zero, 
considering this fact that matrixes W and H are positive 
so the KKT conditions are satisfied. The local minimum 
is obtained according to ܹ∗	and ܪ∗. Therefore if it is 
guaranteed that the initial matrixes are positive, the 
multiplicative update rules would converge to a local 
minimum. 
 
2. EXPERIMENTAL RESULTS 
Error evaluation factors are applied on non zero elements 
of matrix. In fact, non zero elements are the actual rating 
that should be analyzed and zero elements implies that the 
correspond item is not rated by the user. So error is 
computed based on non zero elements of the rating 
matrix. 
Consider ݎ௜ is a non zero vector of the rating matrix and ݌௜ 
is an approximation that the recommender system has 
computed and z is the number of the vector elements. 
 
2.1. Mean Absolute Error 
MAE is computed as follow [12]: 
௝ܧܣܯ =

ଵ
௝
∑ ௜ݎ| − ,					|௜݌ ݆ = 1,2,… , ௝.ݖ
௜                  (22) 

 
2.2. Root Mean Square Error 
RMSE is computed by the following formula: 

௝ܧܵܯܴ = ටଵ
௝
∑ ௜ݎ) − ௜)ଶ݌
௝
௜ , ݆ = 1,2,… ,  (23)              .ݖ

 
2.3. Relative Error 
RE is one of the popular factors to measure error which is 
computed by the following formula: 
௜ܧܴ =

|௥೔ି௣೔|
|௥೔|

                                                           (24) 
 
2.4. Error Comparision 
In this section, the proposed approch error is evaluated on 
Netflix data set [13]. RE diagram, as shown in Figures 2 
and 3, represented as discrete points. In this diagram, the 
horizental and vertical axes represent index of data and 
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the error related to that index correspondingly. In MAE 
and RMSE diagrams, shown in Figures 4 and 5, the 
horizental and vertical axes represent the number of data 
and error value correspondingly. 
 

 
Figure 2. Relative error based on simple NMF 

 

 
Figure 3. Relative error of the proposed approach 

 

 
Figure 4. MAE comparison between the simple NMF 

and the proposed approach 
 

 
Figure 5. RMSE comparison between the simple NMF 

and the proposed approach 
 
The results show that the proposed approach introduces 
less amount of error compared to the simple NMF 
factorization in recommender system. 
 
3. CONCLUSION 
Matrix factorization techniques have become a dominant 
methodology within collaborative filtering recommenders. 
Experience with datasets such as the Netflix Prize data 
has shown that they deliver accuracy superior to classical 
nearest-neighbor techniques. At the same time, they offer 
a compact memory-efficient model that systems can learn 
relatively easily. What makes these techniques even more 
convenient is that models can reveal the group of users 
that have similar interesting. This paper proposes a new 
update rule algorithm to compute matrix factorization. 
The proposed method guarantees the convergence of the 
algorithm to a local minimum which is the best 
factorization with the least estimation error. 
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