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Abstract  
Today’s world has seen a further attention in the area of sustainability to integrate whole business networks in an efficient 

way. Regulations of carbon emissions and the sustainability dimensions enforce the decision-makers of supply chain 

networks to redesign their systems based on these factors. Such difficulties motivate us to develop a sustainable production-

distribution supply chain network design problem considering carbon emissions policies among the first studies in this 

area. Accordingly, a mixed integer non-linear programming model has been developed. To tackle the proposed problem, its 

complexity increases exponentially while the size of problem increase. Hence, another innovation of this work is to 

introduce a new hybrid metaheuristic based on whale optimization algorithm as a recent successful optimizer to solve the 

complex and non-linear problems. The collaboration of applied algorithms has been designed by Taguchi method, 

satisfactorily. A comprehensive analysis has been evaluated through a comparative study along with some sensitivity 

analyses.  
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The production-distribution systems have been investigated and analyzed in the recent years due 

to a rapid growth in sustainability attentions (Fard & Hajiaghaei-Keshteli, 2018). Sustainability should 

be considered in all of organizations due to recent governments’ policies in the developed countries 

(Hajiaghaei-Keshteli & Fathollahi-Fard, 2018). Generally, the sustainability dimensions should be 

adjusted based on economic, environmental and social aspects for a production-distribution supply 

chain system (Absi, Dauzère-Pérès, Kedad-Sidhoum, Penz, & Rapine, 2013). Similarly, recent years 

have seen a rapid interest in environmentalism to consider the carbon emissions to design the supply 

chain network (Beamon, 1998; Benjaafar, Li, & Daskin, 2012; Ghosh, Jha, & Sarmah, 2016). In most of 

case studies, optimization of a supply chain (Kirkpatrick, Gelatt, & Vecchi, 1983) has been based on 

economic factors (profit maximization or cost minimization), with less or no regards to the negative 

impacts on the environment(Fathollahi-Fard, Hajiaghaei-Keshteli, & Tavakkoli-Moghaddam, 2018b; 

Golmohamadi, Tavakkoli-Moghaddam,&Hajiaghaei-Keshteli, 2017; Sadeghi-Moghaddam, Hajiaghaei-

Keshteli, & Mahmoodjanloo, 2019). By another point of view, recent protocols committed by 

international organizations and governments are mainly decided to control and to reduce carbon 

emission levels, more efficiently till 2020(Golmohamadi et al., 2017). Therefore, mitigating and 

reducing carbon emissions are one of main concerns in developing a sustainable supply chain 

network design (B. Zhang & Xu, 2013). This reason has been motivated to redesign of supply chain 

networks to incorporate goals from all dimensions of sustainability i.e. economic, environmental and 

social aspects (Absi et al., 2013; Fard & Hajiaghaei-Keshteli, 2018; Hajiaghaei-Keshteli & Fathollahi-

Fard, 2018). 

Overall, there are several options which have to be weighed, taking into consideration the 

numerous constraints and requirements (Bonney & Jaber, 2011). Most of developed decision-making 

models mainly focus on the location of facilities and the allocation between each level (Bouchery, 

Ghaffari, Jemai, & Dallery, 2012; Bouchery, Ghaffari, Jemai, & Tan, 2017). In this regard, there are a 

few works proposing the inventory decisions in addition to the sustainable dimensions (C.-L. Chen & 

Lee, 2004; X. Chen, Benjaafar, & Elomri, 2013; Darvish, Larrain, & Coelho, 2016; Daskin, Coullard, & 

Shen, 2002). Regarding the analytical based operations management adopted from the literature, the 

sources of green and environmental emissions should be eliminated and reduced from a robust 

production-distribution supply chain system. It is generally believed that assigning effective and 

efficient operations among design and management of supply chain networks, especially with carbon 
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policies is a great challenge(Chan, Chung, & Wadhwa, 2005; Dobos, 2007; Hua, Cheng, & Wang, 

2011). Therefore, reduction of emissions at each stage of the supply chain will induce an overall 

reduction in emissions (Jaber, Glock, & El Saadany, 2013). A sustainable supply chain emphasizes on 

being environmentally balanced while being economically viable (J. Li, Su, & Ma, 2017; Shu, Teo, & 

Shen, 2005). This includes strict carbon capping indicating some firms which should be regulated the 

main emissions of a sustainable production-distribution supply chain(Fathollahi-Fard & Hajiaghaei-

Keshteli, 2018; Hajiaghaei-Keshteli & Fard, 2019). The main limitations are regularly to set the 

carbon taxing (Fathollahi-Fard, Hajiaghaei-Keshteli, & Mirjalili, 2018a), carbon capping and 

trading(Sahebjamnia, Fathollahi-Fard, & Hajiaghaei-Keshteli, 2018), and buying carbon credits from 

another firm (Fathollahi-Fard, Hajiaghaei-Keshteli, & Mirjalili, 2018b). All in all, this study employs 

all these three carbon policies to consolidate in a sustainable production-distribution and inventory 

control decisions model. Here, a brief review about two different but related streams of present work 

including production-distribution systems and carbon policies in supply chain networks have been 

overviewed. 

1.1. Production-distribution supply chain network design  

The general idea of supply chain networks is a facility location planning. Its main components are 

including but not limited to inventory, facilities planning establishment, and also transportation 

(Letmathe & Balakrishnan, 2005; S. Li, 2014). Generally, there are different types of supply chain 

networks from single objective deterministic distribution network planning up to multi-objective 

stochastic sustainable supply chain networks. They usually are considered in joint optimizing 

decisions such as facilities location, amount of right allocation, the level of inventory and an efficient 

distribution network(Fathollahi-Fard, Hajiaghaei-Keshteli, & Tavakkoli-Moghaddam, 2018a; Lim, 

Jeong, Kim, & Park, 2006; Miranda & Garrido, 2004; Samadi, Mehranfar, Fathollahi Fard, & 

Hajiaghaei-Keshteli, 2018; Selim, Araz, & Ozkarahan, 2008; Shen, Coullard, & Daskin, 2003; Q. 

Zhang, Sundaramoorthy, Grossmann, & Pinto, 2017). As one of the first and important studies in this 

area, Sabri and Beamon (Chan et al., 2005) developed a multi-objective supply chain network design 

model to strategic and operational supply chain and logistic planning. In their research, the structure 

of supply chain network consists of four echelons from suppliers to customers. Their model provided 

an efficient performance criterion to analyze the whole network. There are also many studies with 

different type of location problems along with inventory management decisions. Based on the 
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literature, the economic order quantity (EOQ) model is one of earlier frameworks to support ordering 

decisions in supply chain networks. In this regard, Daskin et al. (Daskin et al., 2002) applied a 

Lagrangian relaxation methodology to solve a simple EOQ model. As such, Shen et al. (Q. Zhang et 

al., 2017) employed a same model and addressed by a hybrid heuristic algorithm based on a branch 

and bound method. From both of (Daskin et al., 2002) and (Q. Zhang et al., 2017) studies, the clients 

represent retailers, each of which is a potential candidate for a distribution center. In another similar 

study, Shu et al. (Shu et al., 2005) developed a novel optimizer to tackle a pricing-based supply chain 

network. In 2004, Chen and Lee (C.-L. Chen & Lee, 2004) developed a multi-period, multi-stage and 

multi-product scheduling optimization problem for a multi-echelon supply chain network under 

uncertainty. In another similar work, Miranda and Garrido (Miranda & Garrido, 2004) presented a 

methodology to decide on capacitated facilities locations as warehouses and to decide the size of 

orders. In 2005, Chan et al.,(Chan et al., 2005) also proposed a new approach in GA along with 

employing analytic hierarchy process (AHP) to solve the same problem in a multi-factory model. 

Similar to this work, Darvish et al. (Darvish et al., 2016) suggested a multi-echelon supply chain 

network to optimize simultaneously production decisions, inventory levels and distribution network 

costs. While Zhang et al. (Q. Zhang et al., 2017) introduced multistage production routing problem 

that considers the coordination of distribution planning for different goods into many customers, 

production and routing decisions. An iterative mixed integer linear programming based on a heuristic 

approach is used to solve the problem. 

Regarding the fuzzy-based papers in this area, there are a number of integrating studies. For 

example, Golmohamadi et al., (Golmohamadi et al., 2017) proposed a fuzzy production-distribution 

supply chain network using batch transferring. They solved their model by a set of well-known and 

recent metaheuristics including Variable Neighborhood Search (VNS), Imperialist Competitive 

Algorithm (ICA), Red Deer Algorithm (RDA) and hybrid algorithm based on RDA. Similarly, in 

2017, Sadeghi-Moghaddam et al., (Sadeghi-Moghaddam et al., 2019) proposed a production-

distribution supply chain in a fuzzy environment. They also considered different types of discount in 

their model. To solve this NP-hard problem, they suggested two population-based i.e. Particle Swarm 

Optimization (PSO) and Whale Optimization Algorithm (WOA) and one single point optimizer i.e. 

Simulated Annealing (SA). 
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Regarding the capacitated production-distribution systems, Lim et al.,(Lim et al., 2006) developed 

a model to optimize the capacities of production plants and distribution centers by considering the 

uncertainty. In 2008, Selim et al., (Selim et al., 2008) presented a multi-objective model as a 

collaborative production–distribution planning by fuzzy goal programming approach. In another 

research, Bouchery et al. (Bouchery et al., 2017) discussed about the coordination in supply chain 

through a centralized solution, where multi-objective optimization is used to decrease the costs and 

carbon emissions.  

Most of recent works concerning uncertainty and stochastic models in the area of production-

distribution supply chain network. For instance, Wu and Chang (Wu & Chang, 2004) considered a 

grey programming approach to optimize an integrated production and distribution network in textile 

industry under uncertainty. They divided the environmental costs into two main reasons i.e. water 

resources fees and pollution charges. To compute the unit of production cost, these two factors were 

formulated. Their main limitation was the decisions variables which are not correlated to the 

environmental costs, explicitly. As such, the study of Letmathe and Balakrishnan (Letmathe & 

Balakrishnan, 2005) was another attempt to coordinate the environmental concerns into a production 

planning system. The main supposition was to consider different technologies to produce a good. 

These technologies are differed from their resources consumptions and environmental emissions. The 

goal was to find an interaction between the total revenues and costs. Another supposition which may 

differ from other works was to consider a set of levels for products demand to be decreased while the 

environmental emissions have been increased. Recently, in 2018, Fathollahi-Fard et al., (Fathollahi-

Fard, Hajiaghaei-Keshteli, et al., 2018a) proposes a multi-objective stochastic model to formulate a 

closed-supply chain network design problem considering the environmental dimensions. They 

applied a Life Cycle Assessment (LCA) framework to assess the environmental legislations of 

proposed model. They solved their model by four well-know and recent metaheuristics. Accordingly, 

GA, VNS, Keshtel Algorithm (Noureddine & Oualid) and Virus Colony Search (VCS) have been 

employed.  

In conclusion, similar to mentioned studies, there are many other papers considering the 

environmental factors in a production-distribution system (Xu, He, Xu, & Zhang, 2017). Therefore, 

environmentalism for such decision-making systems is consolidated several new insights which have 
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been derived so far in the literature review. These facts keep this research area active and probing 

new ideas is inevitable. 

 

1.2. Sustainable supply chain considering carbon policies   

There are many works concerning the sustainable supply chain network design in the last decades. 

As explored by Sahebjamnia et al. (Sahebjamnia et al., 2018), only seven papers in high rank related 

journals have been published between 2015 and 2017 to address the sustainable supply chain network 

design problem. As mentioned earlier, economic, environmental and social aspects are three main 

sustainability dimensions. One of suppositions of environmental aspects is considering the carbon 

policies.  In regards to the both single period and single stag, the study of Zhang and Xu (B. Zhang & 

Xu, 2013) revealed that more efforts on considering carbon emissions to evaluate multi-item supply 

chain networks are needed to be investigated. In 2017, Xiaoping et al. (Shi, Zhang, & Sha, 2012) 

studied the same problem to indicate that one of main issues of Pareto improvements in supply chain 

networks is to consider the green technology. Recently, Hajighaei-Keshteli and Fathollahi-Fard 

(Fathollahi-Fard & Hajiaghaei-Keshteli, 2018) emphasized that more attempts on the environmental 

sustainability aspects such as carbon emissions policies are needed to be evaluated. This reason 

motivate our attempts to contribute a new production-distribution system considering carbon 

emissions policies.  

Based on both multi-stage and single period, Dobos (Dobos, 2007) detailed the effect of emission 

trade on production-inventory approach. As such, Absi et al. (Absi et al., 2013) analyzed different 

carbon policies for a lot sizing multi-resource supply chain network design problem. Consequently, 

Shi et al. (Toptal, Özlü, & Konur, 2014) probed different impacts of carbon banking for an integrated 

production-distribution-inventory planning system through using an Arrow-Karlin model 

(Kirkpatrick et al., 1983). More recently, Li (S. Li, 2014) employed a same methodology as introduced 

by Shi et al., to deteriorate different items with their trade emission for a manufacturing system.  

For multi-period and multi-stage, there is only a few works. From a recent study, Ghosh et al. 

(Ghosh et al., 2016) considered three main carbon emissions for a distribution network design 

problem. They probed the conflicting between the total cost and environmental emissions.   

Another group of papers is mainly focusing on both single stage and infinite planning horizon 

period. In this regard, Bonney and Jaber (Bonney & Jaber, 2011) proposed a new variant of EOQ to 
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cover the environmental impacts. As such, Hua et al. (Hua et al., 2011) considered the operational 

activities for a distribution network to find an interaction between economic and green impacts. In 

another work, Bouchery et al. (Bouchery et al., 2012) considered sustainability criteria for the same 

model. Similarly, Chen et al. (X. Chen et al., 2013) by using a similar model, compared different 

carbon emissions. Recently, as a continuation study of (Bonney & Jaber, 2011), Toptal et al. (Toptal et 

al., 2014) a three-level supply chain network design is developed regarding a new variant of EOQ 

models. At the last but not the least, Wahab et al. (Wahab, Mamun, & Ongkunaruk, 2011) utilized an 

integrated approach to cover a variety of defective items by considering return policy based on an 

EOQ model. There are more other works concerning environmental and sustainable measurements 

which have been integrated with EOQ and EPQ frameworks (J. Li et al., 2017). This issue indicates 

the necessity of new optimization model to analyze more the environmental emissions.  

Regarding the aforementioned works and to the best of our knowledge, there is no paper in the 

production-distribution problem that considers (Fard & Hajiaghaei-Keshteli, 2018) the safety stock 

constraints and the impacts of lead time as well as (Hajiaghaei-Keshteli & Fathollahi-Fard, 2018) 

considering both overtime and regular production rates. Therefore, the present paper models an 

integrated supply chain network to cover all production, distribution and inventory planning, 

simultaneously, with carbon emissions. The proposed sustainable supply chain network can also 

cover the lead time with regular and over time production rates with several real-life constraints. 

This paper has both important applied and theoretical contributions. Primarily, the detailed literature 

review on both production-distribution problem with environmental constraints and sustainable 

supply chain network by considering lead time and ordering policies. Secondarily, facility locations 

and their deals with the opened locations are defined. This research formulates a non-linear mixed-

integer aggregate the model. Due to its complexity, a set of well-know and recent metaheuristics and 

a hybrid whale optimization algorithm have been developed as another main contribution of this 

study. Finally, regarding the model proposed and a set of sensitivity analyses performed, several 

practical implications are discussed. 

 

2. Problem modeling  

This work aims to develop a new sustainable supply chain network with three echelons as a type 

of location and allocation problems by considering the carbon emissions policies. Generally, the 
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model provides these important factors to design a sustainable supply chain network including the 

manufacturing cost, the holding cost, the transportation cost, the ordering cost, the regular and 

overtime of manufacturing process and the environmental emissions regarding the transportation, 

manufacturing and holding cost of system. As mentioned earlier, there are three carbon emissions 

policies in this study including strict carbon capping, carbon taxing and considering the cap-and-

trade of carbon. In this regard, a Mixed Integer Non-Linear Programming (MINLP) model has been 

developed with two conflicting objective functions including the minimization the total cost of 

system and carbon emissions considerations. Overall, there are three echelons in our study including 

suppliers (A), manufacturers (B) and distributers (C). A planning horizon with multiple time and a set 

of routings (I) have been considered. In regards to illustrated problem, following assumptions are set 

for the model proposed: 

 There is no flow between the same facilities in each echelon.  

 All demand must be satisfied.  

 The lead time of manufacturer B to the item I is a fixed parameter.  

 The standard normal distribution value is fixed for all members of supply chain network. 

 There is no capacity limitation for the order quantity.  

 The setup times of products are considered by the times of assembly and obtained shortage 

item to assemble the eventual products.  

 In regards to the flow of this forward supply chain network, a unique output product can be 

manufactured by each facility B. Each unit of final product may be assembled from multiple units of 

many input products. Therefore, each facility B can correspond some unit initial products to a 

unique final product.  

 Similar to other production systems, there is only one upstream node for a set of initial input 

products for each facility B. In this regard, it is possible that there are several upstream nodes for 

each facility B. There are a group of external suppliers or some other plants for manufacturing. In 

this case, facility B with several products can be supplied by an external supplier. 

Overall, the used sets, parameters and decision variables are presented as follows: 

Sets: 

A Suppliers 

B Manufacturers 
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C Distributers 

I Items to be supplied to manufacturers  

P Products delivered to distributers  

D Demand  

t Time of periods  

Parameters:  

LTBI Lead time  

rBI Reorder point  

Z1-α Service level of proposed supply chain  

 Demand variance during the lead time  

HCBI Holding cost of item I at manufacturer B 

QBI Order quantity for the item I at manufacturer B 

OCBI Order cost of item I at manufacturer B 

FB Opening cost of manufacturer B 

µCP Mean demand of products  

 Variance demand of products  

HCCP Holding cost at distributer C for product P 

CBpt Regular time production cost per unit  

CCPBt Cost of per unit over-time production 

TCBAI Cost of transforming each unit item I from supplier A to manufacturer B 

TCCBP Cost of transforming each unit product P from manufacturer B to distributer C 

EMFB Fixed emissions from manufacturer B 

EMVB Variable emissions from manufacturer B 

EOFPB Fixed environmental emissions due to transportation of product P from 

manufacturer B 

EOVPB Variable environmental emissions due to transportation of product P from 

manufacturer B 

EOFIA Fixed environmental emissions due to transportation of item I from supplier A 

EOVIA Variable environmental emissions due to transportation of item I from supplier A 

EIPC Environmental emissions due to inventory at distributer C 

EIPBt Environmental emissions due to inventory at manufacturer B 

Τ Carbon Tax 

F Fine at exceeding carbon cap 

Ψ Trading cost of carbon credits 

CCap Carbon cap  

M A big scalar  

Decision variables:  

XB It gets 1, if the manufacturer B is open; otherwise 0.  

YCBP It gets 1, if the materials P transported to distributer C from manufacturer B; 

otherwise 0.  

ZBAI It gets 1, if supplier A serves item I to manufacturer B; otherwise 0.  

QRCPBt Regular time of production quantity 



 

Journal of Research in Science Engineering and Technology (2021)  emi &F. Niazi M. Khad  

45 

 

QOCPBt Over-time of production quantity 

Here, the proposed formulation has been presented. The model has been inspired by the main 

previous works in this area i.e. [38-43]. For a distributer, the inventory would be stocked by 

supplying the demand of customers based on 1-α probability during the lead time LTBI .Therefore, 

following function may be used to estimate this probability.  

 (1) 

where D(LTBI) during the lead time is item demand D. So, as may be seen in the following 

equation, a normal distribution function is utilized to estimate the reordering point: 

 
(2) 

Similar to other production systems, the variance may be neglected due to the lead time is fixed. 

As a result, the reordering point can be reconsidered as follows: 

 (3) 

where the value of standard normal distribution value is calculated by Z1-α. As suggested in Eq. 

(3), the computation of holding cost has been illustrated. From the calculation presented by Eq. (4), 

the first term computes the holding cost average of ordering quantity. As such, the safety stock cost is 

calculated in the second term.   

 (4) 

Taken together, all cost of holding and order system can be estimated as seen in Eq. (5).   

 
(5) 

As mentioned earlier, there is no capacity constraints in our proposed formulation. Hence, there is 

a set of differences between Eq. (5) in terms Q and equating it to zero. To do this end, the following 

formula is calculated:  

 
(6) 

Based on the Eq. (6), the amount of is equal to:  

 

(7) 
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After the calculation of Eq. (7) and Eq. (5), the total cost of production and distribution system can 

be given in the first objective function as seen in Eq. (8). In this equation, the first term considers the 

opening cost which is required to open the manufactures. The second term considers the ordering 

and holding cost of manufacturers. As such, the third term computes the buffer stock holding cost. 

The knowledge of manufacturing cost for manufacturers is imparted by the fourth term. At the end, 

the two last terms give the transportation costs between the suppliers and manufacturers as well as 

the manufacturers and distributers.  

 

(

8) 

The second objective function is given in Eq. (9). This objective aims to minimize the 

environmental and carbon emissions of all supply chain network members by using four main parts. 

The carbon emission of manufacturing activities is accounted by the first part. Both second and third 

parts support the carbon emission of transportation activities from suppliers to manufacturers and 

similarly, from manufacturers to distributers. The fourth term of second objective function provides 

the carbon emissions by the inventory.  

 

(

9) 

Regarding the carbon taxation, certain tax may be considered as the total emissions computed by 

Eq. (9). There is a supposition for each environmental emissions unit to assume we the tax to be τ. 

Accordingly, Eq. (10) presents the total cost of supply chain system with the supposition of carbon 

tax:  

 (10) 

As such, there is a limitation for the carbon emissions amount to be under strict carbon policy, 

there is a constraint on the amount of carbon emitted across the supply chain network under the 
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presented carbon policy. Here, this supposition is existed to impose the cap on the entire of all supply 

chain network. Assume that Ccap is the amount of carbon cap. Accordingly, a limitation would be 

considered as follows:  

 Ccap (11) 

As discussed before, the carbon cap-and-trade policy is also considered by this study. Generally, 

there are two cases based on a positive and negative value of carbon credit as the result of Eq. 12. If 

the environmental emissions are greater than the cap, a positive carbon credit would be considered. 

Conversely, if the environmental emissions are lower than the cap, a negative carbon credit value 

would be traded. 

 Ccap (12) 

If it is assumed that ψ would be the unit carbon emission cost. Accordingly, the total cost of 

proposed system after the conditions of carbon cap and trade would be as follows:  

  (13) 

The other constraints of model can be listed as follows:  

 
(14) 

 
(15) 

 
(16) 

 
(17) 

 
(18) 

 
(19) 

;  (20) 

 
(21) 

 
(22) 

 
(23) 

 (24) 

 (25) 

As detailed by Eq. (14), this constraint guarantees that for all products, the demand of distributers 

(warehouses) should be satisfied by only one established manufacturer or plant center. As being 
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indicated by Eq. (15), the supplier A must provide its supplying, operationally. As such, Eqs. (15) and 

(16) also proposed that manufacturer B is restricted by a specific capacity storage and production 

limitation. To compute the average and variance of production to manufacture at manufacturer B, 

Eqs. (17) and (18) are provided to do this end. An interaction between the demand of distributors by 

considering previous, current and the production quantity periods for each product P as the main 

inventory decisions is considered by Eq. (19). The production quantities restriction during regular 

and overtime hours are decided by Eqs. (20) and (21). The distributer capacity storage is determined 

by Eq. (22). To support that a product P can be manufactured by only an opened manufacturer B, Eq. 

(23) confirms this issue. At the end, the binary variables are guaranteed by Eq. (24). Similarly, the 

positive continuous variables are ensured by Eq. (25).  

To the best of our knowledge, the presented model has not been introduced by a similar study. 

Hence, the proposed model has addressed a sustainable production-distribution supply chain network 

with carbon emissions policies. Generally, the simplest case of a location-allocation problem is NP-

hard (Fathollahi-Fard & Hajiaghaei-Keshteli, 2018; Fathollahi-Fard, Hajiaghaei-Keshteli, et al., 

2018a). In this regard, the presented model as a type of location-allocation problem is very difficult to 

solve due to inventory and multi-period decisions as well as considering a multi-echelon supply chain 

network. Therefore, metaheuristics are needed to be considered for solving such models when 

especially the size of problem increases. In the following, the proposed solution methodology 

including three proposed algorithms via their encoding and procedures has been introduced.  

3. Solution methodology 

Another main contribution of this study is to propose a new hybrid metaheuristic algorithm based 

on the Whale Optimization Algorithm (WOA) as a recently-developed optimizer and Simulated 

Annealing (SA) as a well-known algorithm utilized in the literature repeatedly. Accordingly, a 

comparative study based on these three algorithms i.e. SA, WOA and a Hybrid of WOA and SA 

(HWS) has been applied. Since the proposed problem is a bi-objective optimization one, this 

comparison would be based on the Pareto optimal frontier. In this regard, when a solution can 

dominated another solution, if it has a better value at least in one of objective functions (Fard & 

Hajiaghaei-Keshteli, 2018). The best solution of algorithms is a set of solutions called Pareto optimal 

frontier. Since the structure of multi-objective optimizers has been offered by many recent similar 

studies, interested readers can study their works such as (Fathollahi-Fard, Hajiaghaei-Keshteli, et al., 
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2018b; Letmathe & Balakrishnan, 2005). Here, at first, due to continuous search space of 

metaheuristics as well as encoding the problem, satisfactorily, an encoding scheme has been proposed 

to transform an infeasible continuous representation to a feasible discrete one regarding the decision 

variables of model. In addition, the description of applied metaheuristics has been represented as 

well.  

3.1. Encoding scheme of metaheuristics  

Similar to most of studies using metaheuristic planning approaches, an encoding scheme is 

necessary to employ for presented mathematical formulation (Golmohamadi et al., 2017; Sadeghi-

Moghaddam et al., 2019). The proposed problem has three main binary decision variables i.e. 

. Two other continuous variables i.e. can be calculated based on 

the binary variables. Among them,  is a type of location variables. As such, are two 

allocation variables. For both groups, a popular technique called random-key is utilized to transform 

an infeasible representation to a feasible one. Fig. 1 shows the representation for selection of 

manufacturers. Regarding this example, there are four potential sites for manufactures and among 

them, only two of them must be selected to be opened. In the first step, a number of random numbers 

distributed by uniform function (0, 1) has been generated. Accordingly, if this value greater than 0.5, 

it get 1 to be considered as an open manufacturer. Otherwise, it gets 0. Notably, the higher values 

generally get 1. Based on this rule, the second and fourth manufacturer should be opened. More 

details can be seen in Fig. 1, as well.  

      

 0

.34 

0.

57 

0

.25 

0.

68 
 

     

 0 1 0 1 
 

 
Fig. 1. The used technique for selecting manufactures to be opened  

Regarding the allocation variables, based on the located manufacturers, a priority-based 

representation has been utilized similar to recent similar studies (Golmohamadi et al., 2017). The 

considered example for representation of allocation has been considered in Fig. 2. There are two 

suppliers and three distributers by considering two items to be supplied from suppliers to 

manufacturers as well as four products delivered from manufacturers to distributers. Note that all 

items and products should be assigned in all levels. Therefore, as represented in Fig. 2, for each 

Step 2: Transform to a feasible solution 

Step 1: Initialize the random numbers 



 

Journal of Research in Science Engineering and Technology (2021)  emi &F. Niazi M. Khad  

44 

 

selected manufacturer, a number distributed by uniform function (0, 2) is generated. As such, for 

each distributer, based on the selected manufacturers, a uniform distributed function should be 

designed. Therefore, from the Fig. 1, a uniform distributer between (1,2) and (3,4) has been 

considered. Taken together, supplier one has been allocated to both selected manufacturers. As such, 

the second manufacturer is considered for the first and third distributers. The fourth manufacturer is 

assigned to the second and fourth distributers, as well. More details are given by Fig. 2.  

  

 0

.31 

0

.52 

1

.95 

3

.68 

1

.92 

3

.47 

 

1 1 2 4 2 4 
  

Fig. 2. The used technique for allocation of suppliers to manufacturers and manufacturers to distributers  

  

3.2. Simulated Annealing (SA) 

One of well-known techniques among traditional metaheuristics is Simulated Annealing (SA) 

proposed by Kirkpatrick et al., (Kirkpatrick et al., 1983). This single solution algorithm is inspired by 

the annealing process of heavy metals. In brief, this algorithm starts with an initial random solution. 

Based on the local search strategies, a new neighbor solution will be generated. If this solution has a 

better fitness in comparison with the current one, it would be replaced. Otherwise, regarding an 

accepting rule based on the fitness evaluations and the current temperature of algorithm, a decision 

for accepting or rejecting this new solution should be made. Since the proposed problem is a bi-

objective optimization one, the structure of accepting or rejecting a new solution would be 

differentiated and complicated. Regarding the Pareto optimal frontier, a solution replaced another if 

it can dominated the current one. Otherwise, the Pareto optimal solutions should be updated. The 

multi-objective version of SA has been employed in many similar studies (Fathollahi-Fard, 

Hajiaghaei-Keshteli, et al., 2018b; Hajiaghaei-Keshteli & Fathollahi-Fard, 2018; Letmathe & 

Balakrishnan, 2005; Samadi et al., 2018). This applied version is similar to them. To address the details 

of the multi-objective SA, a pseudo-code has been provided as seen in Fig. 3.  

 

Tune the parameters.  

Initialize and evaluation fitness functions ( oldx  , fj( oldx )).  

Best solution = ( oldx  , fj( oldx )).  

Step 1: 

Step 2: 
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it=1; 

while it Maxit   

sub=0; 

while sub Subit  

Do one of mutation procedures and generate newx  

Calculate the fitness function and (Δfj) 

if   

               Update the Best solution =(x' , fj(x')) 

               Update the solution   oldx = newx   

else if  

                Put this solution in Pareto set. 

else   

                  ,   h=rand 

                if h<  && h<  

               Update the solution  newx = newx   

endif 

endif 

sub=sub+1; 

endwhile 

Update temperature (T=α*T). 

Update the non-dominate sorting in this Pareto set. 

it=it+1; 

endwhile 

return the non-dominated solutions;  

Fig. 3. Pseudo-code of the applied multi-objective version of SA 

 

3.3. Whale Optimization Algorithm (WOA) 

Recent years have observed a rapid development of novel bio-inspired algorithms to solve NP-

hard problems. The new characteristics of these optimizers in balancing the search phases i.e. 

intensification and diversification lead to find the global solutions instead of several local solutions, 

satisfactorily. One of successful recently-developed metaheuristics called the Whale Optimization 

Algorithm (WOA) inspired by whales’ behavior is proposed by Mirjalili and Lewis (Taguchi, 1986) in 

2016. This optimizer has been motivated by several interested researchers i.e.(Fard & Hajiaghaei-

Keshteli, 2018; Sadeghi-Moghaddam et al., 2019) to apply and to propose several variants of this 

algorithm. This metaheuristic uses three main simulation operators of humpback whales including 

the imagery of prey, encircling prey and bubble-net foraging behavior. Regarding the search phases, 
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the WOA does the intensification properties by encircling prey. As such, the imagery of prey 

maintains the diversification phase. At the last but not the least, the bubble-net foraging behavior 

generally performs both exploitation and exploration phases. One of the main benefits of WOA for 

users is that this metaheuristic is simple to tune by using only two input parameters. The related 

formulation of these operators can be referred to (Taguchi, 1986). As mentioned earlier, a multi-

objective version of WOA is needed to be investigated. Similar to other population-based technique, 

selecting the next generation of algorithm is challengeable to solve a multi-objective optimization 

problem. Accordingly, the non-dominated sorting is characterized for the considered WOA similar to 

(Fard & Hajiaghaei-Keshteli, 2018) and (Taguchi, 1986). Generally speaking, the details of considered 

multi-objective WOA are provided by a pseudo-code as seen in Fig. 4. 

 
Fig. 4. The pseudo-code of applied multi-objective of WOA 

 

3.4. Hybrid of WOA and SA (HWS) 

As detailed earlier, one of main improvements of this proposal is to propose a new hybrid 

metaheuristic based on WOA and SA called as HWS. Generally, the proposed HWS considers WOA 

as the main loop and SA as the local loop. The properties of SA motivated several related researchers 

to employ this algorithm in their proposed hybrid methods as a local search improvement. In the 

developed HWS, instead of spiral updating positions of each search agent, a local search based on SA 
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is considered for each agent. Actually, in the proposed algorithm, SA does the local search based on 

the spiral procedures and accepting and or rejecting of solutions have been formulated regarding the 

SA structure. Based on our treatments, this SA rules help the algorithm to improve both 

intensification and diversification phases. Except of this operation of WOA, the other steps of HWS is 

completely similar to the main original idea of WOA. Note that this applied optimizer is also 

developed in a multi-objective version. To consider more details about the proposed HWS, its 

pseudo-code is provided as seen in Fig. 5. 

  

 
Fig. 5. The pseudo-code of proposed multi-objective of HWS 

 

4. Experimental results 
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In this section, first of all, a set of data with different instances has been generated. Consequently, 

based on the generated data, the proposed optimizers should be tuned to select a set of proper values 

to improve the performance of applied metaheuristics. Accordingly, a comparative study has been 

designed to evaluate the effectiveness and efficiency of obtained optimizers in different criteria and 

measurements. To validate the proposed model, a set of sensitivity analyses based on the key 

parameters of considered model has been extended. Finally, based on the sensitivity analyses and the 

results of proposed optimizers, the managerial implications of this study has been recommended, as 

well.  

 

4.1. Instances  

Since this paper is the first attempt to develop a sustainable production-distribution supply chain 

network with all location, allocation and inventory decisions under carbon emissions policies in a 

three echelons, there is no similar problem from the literature to use their data. Accordingly, the test 

problems have been generated by using an approach based on similar papers (Fathollahi-Fard & 

Hajiaghaei-Keshteli, 2018; Letmathe & Balakrishnan, 2005).  

To evaluate the applied optimizers with different complexities, 15 test problems in three 

classifications i.e. small, medium and large scales are introduced as given in Table 1. The surfaces of 

model’s parameters are computed as illustrated in Table 2. Note that all fixed and variable 

environmental emissions have been benchmarked by using an approach proposed in (Fathollahi-Fard, 

Hajiaghaei-Keshteli, et al., 2018a). The details of parameters were given in Section 2.  

Table (1): Problem instances  

Classificati

on 

No. of 

problem 

A B C I P D t 

Small  P1 2 4 4 4 10 10 3 

P2 2 6 6 5 12 20 3 

P3 6 8 8 6 14 30 3 

P4 6 10 12 7 16 40 4 

P5 6 12 16 8 18 45 4 

Medium  P6 10 12 20 10 20 60 4 

P7 10 12 26 10 22 70 6 

P8 10 14 32 10 24 80 6 

P9 10 14 38 11 26 90 6 

P10 10 16 44 12 28 100 8 

Large  P11 15 20 50 14 30 130 8 

P12 15 22 54 15 32 150 8 
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P13  15 24 60 16 34 160 10 

P14  15 26 70 17 36 170 10 

P15  15 30 80 18 38 200 10 

 

Table (2): Parameters and their surfaces 

Parameter Surface 

 U(0, 2) 

HCBI rand{5, 10, 15, …50} 

QBI rand{100, 150, …, 1000} 

OCBI rand{20, 30, 90} 

FB rand{50, 100, 150, …} 

µCP U(500, 1000) 

 U(1, 10) 

HCCP rand{5, 10, 15, …50} 

CBpt rand{1000, 1100, …, 10000} 

CCPBt rand{1000, 1100, …, 10000} 

TCBAI rand{1, 2, 3, …6} 

TCCBP rand{1, 2, 3, …6} 

 

4.2. Tuning of metaheuristics  

Since given optimizers have a number of parameters to tune, it is necessary to set their parameters, 

comprehensively, to increase their performance (Golmohamadi et al., 2017; Sadeghi-Moghaddam et 

al., 2019). To tune the algorithms, Taguchi method has been considered. As discussed earlier, the 

evaluation of metaheuristics for a multi-objective optimization model is different. A number of 

efficient evaluation metrics is required to assess the metaheuristics in an efficient way. Considerably, 

this study utilizes four well-known evaluation metrics including Number of Pareto Solutions (NPS) 

(Fathollahi-Fard, Hajiaghaei-Keshteli, et al., 2018b; Samadi et al., 2018), Mean Ideal Distance (MID) 

(Fathollahi-Fard & Hajiaghaei-Keshteli, 2018; Fathollahi-Fard, Hajiaghaei-Keshteli, et al., 2018a), 

Spread of Non-dominance Solution (SNS) (Fard & Hajiaghaei-Keshteli, 2018; Hajiaghaei-Keshteli & 

Fathollahi-Fard, 2018) and Maximum Spread (MS) (Letmathe & Balakrishnan, 2005; S. Li, 2014). Thus 

these metrics are well-known and have been utilized in several studies, more explanations along with 
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their formulations are referred to their main papers such as (Fathollahi-Fard, Hajiaghaei-Keshteli, et 

al., 2018b; Sahebjamnia et al., 2018). 

Regarding the collaboration of optimizers, Taguchi method divides the properties of collaboration 

into two categories i.e. noise and control factors. Based on the noise factors, Taguchi employs signal-

to-noise (S/N) to compute the response variation values of optimizers (Abdi, Abdi, Fathollahi-Fard, & 

Hajiaghaei-Keshteli, 2019; Bahadori-Chinibelagh, Fathollahi-Fard, & Hajiaghaei-Keshteli, 2019; 

Buddala & Mahapatra, 2019; Fu, Tian, Fathollahi-Fard, Ahmadi, & Zhang, 2019). Since the model is a 

case of minimization, the lower value of S/N is more preferable. To calculate the S/N, following 

formulation has been considered in this regard:  

 

(26) 

where n is the orthogonal arrays number and Yi is the response value of ith orthogonal array. 

Similarly, regarding the control factors, Eq. (27) represents a selected response value based on the 

characteristics of bi-objective optimization model. Based on the results of MID and MS metrics as the 

convergence and diversity metrics, a new metric called as MCOV to control the responses of 

optimizers (Buddala & Mahapatra, 2019; Hapsari, Surjandari, & Komarudin, 2019) is as follows:  

 
(27) 

Each parameter of optimizers is a factor with some candidate values as the levels of each factor. 

Based on the previous studies and our experiences, Table 3 gives the factors of each algorithm along 

with their candidate levels. The aim is find the best level for each factor. As introduced before, this 

study applies three metaheuristics called SA, WOA and HWS. The SA has five factors along with 

three levels for each of them. In this regard, the total number of treatments for SA is 35=243. The 

WOA has two factors with five levels. Accordingly, the total number of experiments is 52=25. As 

such, the HWS has four factors and levels. Hence, its total treatments equal to 44=256. Note that since 

metaheuristics are a variation of stochastic optimization in nature. Each optimizer must run for 30 

times and their averages should be considered for each treatment of tuning. Overall, there are many 

treatments to do for tuning of optimizers 

One of the main benefits of Taguchi method is to save the time of users by proposing some 

orthogonal arrays to reduce the number of experiments (Bahadori-Chinibelagh et al., 2019). Based on 

the total number of treatments calculated above, the Taguchi method can offer L27 for SA to reduce 
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its total experiments from 243 to 27 treatments. In addition to SA, the orthogonal array of L25 should 

be considered for WOA. Since its total experiments are not very high i.e. 25, its total number of 

experiments has not been changed. At the last but not the least, Taguchi method suggests L16 for 

proposed HWS to decrease its total from 256 to 16. Based on the trial of each orthogonal arrays, the 

responses should be calculated for 30 run times and the metrics should be computed, as well.  

As a result, the tuned parameters of applied optimizers are given in Table 4. Notably, due to page 

limitation, the results of S/N ratio and MCOV have not been reported and can be presented upon 

request of interested readers.  

Table (3): Factors of optimizers and their levels.  

Optimizer  Factor 
Levels  

1 2 3 4 5 

SA  

A: Maximum iteration 

(Maxit) 
1000 1500 2000 - 

- 

B: Sub-iteration (Subit) 20 30 50 - - 

C: Used methodology of 

local search (Tm) 
Swap Reversion Insertion - 

- 

D: Initial temperature (T0) 1000 1500 2000 - - 

E: Rate of reduction (R) 0.85 0.9 0.99 - - 

WOA 

A:Maximum iteration 

(Maxit) 
200 400 600 1000 

1500 

B: Population size (nPop) 50 100 150 200 300 

HWS 

A:Maximum iteration 

(Maxit) 
300 600 800 1200 

- 

B: Population size (nPop) 50 100 150 200 - 

C: Initial temperature (T0) 1000 1200 1500 2000 - 

D: Rate of reduction (R) 0.85 0.88 0.9 0.99 - 

 

Table (4): Tuned parameters  

Algorithm Parameters 

SA Maxit=2000; Subit=30; Tm=Reversion; T0=2000; R=0.99; 

WOA Maxit=1000; nPop=200; 

HWS Maxit=1200; nPop=200;T0=2000; R=0.99; 

 

4.3. Comparison of obtained algorithms  

Here, a comprehensive comparison has been performed to assess the effectiveness and efficiency 

of optimizers applied. This comparative section is based on the evaluation with four assessment 
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metrics of Pareto optimal frontier i.e. NPS, MID, SNS and MS. All results are provided for each 

metric, separately, as seen in Table 5. The computational time behavior for applied optimizers is 

depicted by Fig. 6. Another criterion is to compare the Pareto optimal frontier of algorithms as given 

in Fig. 7 for a sample test problem. Finally, some statistical analyses by using LSD intervals are 

evaluated as seen in Fig. 8.   

From the Table 5, the results obtained by each algorithm based on the evaluation metrics under 

each instances are reported. The best values in each test problem are revealed in bold. Except the 

MID, for other metrics, higher values are more preferable. Meanwhile, the lower value of MID brings 

the better capability of algorithms. Overall, from the tables, the proposed HWS shows a better 

performance in comparison of other algorithms.  

Table (5); Comparison of applied optimizers based on the evaluation metrics of Pareto optimal frontiers  

Test 

problem 

NPS MID MS SNS  

S

A 
WOA HWS SA WOA HWS SA WOA HWS SA WOA HWS 

P1 5 9 8 2.3656 1.4909 2.1668 322971 364337 367835 357683 284855 252546 

P2 9 11 11 2.1409 1.1119 1.1781 583346 673114 659895 699981 786742 696675 

P3 6 12 13 3.0635 2.1143 2.0267 674618 724566 711843 889612 981314 996440 
P4 8 11 12 4.6701 3.6118 2.1146 756024 1017213 995784 1500420 1400858 1634697 
P5 9 12 13 2.9635 3.6959 2.6112 894850 574956 1525546 2355835 2136201 2484306 
P6 9 13 12 5.7248 3.1876 2.8049 1261434 968246 1545794 2701689 2586113 2481696 

P7 10 11 12 7.3716 5.0146 5.4399 1053899 1057282 1129750 3219535 3467159 2868420 

P8 11 13 14 4.5463 5.8759 5.6609 1035657 919442 1129797 3463876 3718771 3506257 

P9 12 14 12 6.8472 4.8438 4.0797 1506496 1865527 1855450 5140232 5409774 5375823 

P10 10 14 12 3.6925 3.9634 3.1708 1750385 1839931 2248624 5210873 5702810 5973421 
P11 11 14 15 5.7481 5.8276 4.0531 1668077 1399581 2302254 5185450 6044003 6090874 
P12 8 13 14 2.6435 4.8701 6.3874 1585811 1761960 1457975 5801526 6319580 6249123 

P13 10 15 15 3.2891 4.2675 3.2895 1547389 1475869 1563762 5833145 6657432 7057842 

P14 11 16 16 4.4763 4.9788 3.8537 1453687 1564587 1674284 5437869 6935741 7125647 

P15 10 15 16 5.8767 4.4633 3.1704 1546738 1564372 1748523 6647315 6457823 6962358 

 

As depicted by Fig. 6, there is a set of similarities between the behaviors of algorithms. From the 

minimum computational time, the SA is the best optimizer. Its efficiency especially in large-scale 

instances is highly differentiated from other algorithms. Both WOA and HWS has a set of similarities 

for small and medium test problems. Except a few test problems, the average time of HWS is clearly 

more than WOA in most of case studies.  
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Fig. 6. Behavior of algorithms in term of computational cost 

 

As shown in Fig. 7, the diversity of HWS’s solutions are more than other algorithms. The main 

reason behind of this issue is that the proposed HWS can use the benefits of both SA and WOA to 

extent its solution and find a better Pareto optimal set. Overall, the proposed HWS can outperform 

and dominated the most of solutions of two employed optimizers i.e. SA and WOA.  

 
 

Fig. 7. Pareto optimal frontier in P8 for applied optimizers 
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Finally, to reach the best optimizers, decisively, some statistical analyses based on LSD intervals 

have been conducted for each evaluation metrics of Pareto optimal frontiers. The outputs given in the 

Table 5 are transformed into a popular measurement called the Relative Deviation Index (RDI) as 

following formula: 

lgsol sol

sol sol

A Best
RDI

Max Min





  (28) 

where lgsolA  has been considered as the value of objective function employed by an assessment 

metric  for each algorithm. As such, solMax  and solMin  are the maximum and the minimum values 

obtained by optimizers, respectively. Similarly, solBest  can be considered as one of solMax and 

solMin due to metrics’ nature. As it may clear, the lower value of RDI is more preferable. Generally, 

based on this measurement, Fig. 8 divides into four sub-figures to show the LSD interval regarding 

each assessment metric. Regarding the NPS (Fig. 8(a)), there is a clear difference between the 

performance of SA and two other algorithms. As can be seen, the SA is the worst optimizer. 

However, WOA is slightly better than WHS in this item. Based on the MID (Fig. 8(b)), it can be 

resulted that the proposed HWS is clearly outperformed both WOA and SA. As such, the SA brings 

the worst capability in this analysis. Similar to the MID, as can be seen from the MS (Fig. 8(c)), the 

HWS is generally better than other metaheuristics. At the last, as can be resulted from the Fig. 8(d), 

the results of SA in the issue of SNS is the worst behavior. In addition, there is a set of similarities 

between the WOA and HWS. But, the WOA is better than the HWS in this case.  

Overall, the performance of both WOA and HWS provides a competitive results. Although the 

WOA shows a better performance in term of NPS and SNS, the proposed HWS generally outperform 

the other algorithms. Note that the main demerit of HWS is the computational time of algorithm.  
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Fig. 8. LSD intervals based on the RDI  

 

4.4. Sensitivity analyses  

Some sensitivities have been performed to evaluate the key parameters to identify the behavior of 

algorithm. Accordingly, the proposed HWS as the best technique in this study is considered. The 

results have been checked with Epsilon Constraint (Kirkpatrick et al.) method similar to recent 

studies e.g.  to identify the high-efficiency of metaheuristics. In this methodology, one of objectives is 

considered as the main goal function. Other objectives have been employed as a set of constraints to 

check the optimal bounds of model. Based on our results, in all experiments, the proposed HWS 
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reaches a same solution similar to EC. Due to page limitation, this validation has not been reported 

and can be presented upon request by interested readers.  

Here, the main parameters including varying of demand and fixed variance, varying of lead time, 

the rate of carbon cap-and-trade and the rate of carbon cap are analyzed. In this regard, by increasing 

the rate of these parameters, both objective functions i.e. Z1: total operational cost and Z2: total 

carbon emissions are evaluated. Considerably, all treatments are reported in Fig. 9-12.  

 
Fig. 9. Impact of mean demand on the objective functions 

 

 
Fig. 10. Impact of lead time on the objective functions 
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Fig. 11. Impact of variance taxation and carbon trading price on the objective functions 

 

 
Fig. 12. Impact of changing carbon cap on the objective functions 

From Fig. 9, there is a clear relation between the total operational and emissions costs and the 

mean demand of customers. By considering a fixed variance, the average of demand in the proposed 

supply chain network would be varied, exponentially. If an increase in the amount of distributor 

demand to the manufacturer is occurred, the cost of each activity involved in the proposed system 

would be increased, as well. Overall costs of system have been increased, uniformly. Similarly, based 

on the environmental emissions, the mean customer demand can affect many parts of the proposed 

model. Since the model is a type of linear proportional dependence on demand of customers, both 

behaviors of objective functions are clearly uniformly linear. 
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As can be seen from Fig. 10, the lead time may be increased, if a change in the total environmental 

emissions and the total operational costs are occurred. To compare with the mean and variance of 

demand, lead time shows a less important to make a change on the system. From the aspect of 

environmental emissions and total operation costs, there is a non-linear relation to increase while the 

lead time increases. For the large amounts of lead time, it is evident that both total operational and 

emissions costs reach a high equal growth.  

What can be envisaged at the first glance of Fig. 11 confirms that there is a directly relation 

between the increase of carbon trading cost or carbon taxation and the amount of total cost for all 

components of system. Clearly, an increase in the amount of carbon trading leads to an increase in 

the amount of total cost of system. This issue is a little different under carbon cap-and-trade. 

Generally, the opportunity to sell the credits which are unutilized would be available, if the amount 

of emissions are low. This reason motivates the carbon cap-and-trade to be beneficial, financially. As 

may be indicated from this graph, it is observed that when the rate of carbon would be increased, 

both policies employed show a higher cost. Conversely, regarding the cap and trade system, the 

carbon taxing would be lower, comprehensively.   

As can be resulted from Fig. 12, it is generally an impact on the amount of total cost and the rate 

of carbon cap under the limitation carbon cap-and-trade policy. Here, there is a variation of carbon 

cap and the amount of total cost. From the smaller amount of caps, the capping limitation is lower for 

the total cost, marginally. When the cap increases, it is observed that carbon cap-and-trade would be 

more efficiently. There is a set of changes on the amount of cap which could lead to a significant 

result on the all components of distribution network based on the restriction of carbon capping. 

Overall, these changes make the model to be safer to select the carbon cap and trade, efficiently.  

Generally speaking, based on the several analyses done from the aforementioned discussion, it is 

obvious that the carbon cap-and-trade is the most efficient policy among all. Regarding the 

managerial implications of this study, we should say that the carbon taxing system is completely 

needed for all production-distribution systems. Based on main changes addressed by presented 

graphs, it is proved that the best way to reduce carbon emissions is cap-and-trade. For the developing 

countries, one of the main contributions would be to consider all economic and environmental 

aspects by a mechanism of carbon cap-and-trade to set of regular policies.  
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5. Conclusion and future works   

Generally, decision makers in supply chain systems face many challenges in the sustainable supply 

chain management. During the study of literature on carbon policies for multi-level supply chain 

network design, we explored a coordinated carbon policies in a supply chain system, which helps 

organization to design a supply chain based on economic advantages and environmental benefits. The 

review of extant literature revealed that the supply chain activities including but not limited to 

manufacturing, transportation and inventory planning are the core reasons of carbon emission. 

Taking all of this into account, this finding motivated us to propose an integrated supply chain based 

on both production and distribution models for a forward supply chain network based on the 

environmental aspects with uncertain customer demands. The model provided was included the 

location of manufacturers, allocation, and the inventory decisions of different items of products. 

Whole of them were formulated by a mixed integer non-linear programming model. The main 

contribution of model was to add three different carbon emission policies for a forward supply chain 

network design problem considering lead time constraints. 

Another main novelty of this study was to develop a new hybrid metaheuristic algorithm called as 

HWS based on the WOA and SA. This algorithm was compared with its original ideas i.e. WOA and 

SA. The algorithms were tuned by Taguchi method. In addition, four well-known multi-objective 

assessment metrics were utilized to evaluate the algorithms with a comprehensive analysis. Based on 

the statistical analyses, the proposed HWS outperform two other algorithms and give the competitive 

results. Based on the sensitivity analyses, the correlation of environmental emissions and some main 

decisions of an economic supply chain network to cover the activities of distributing, manufacturing 

and storing have been analyzed. In addition, the impact of lead time on the environmental emissions 

along with distribution policy, and three-echelon supply chain system were evaluated through a set 

of test problems with different difficulties. Taken together, these considerations in a forward supply 

chain network design give this ability to have a comparison with three carbon policies employed by 

this paper. Among them, carbon cap-and-trade may be more beneficial for such systems.  

There are several recommendations and suggestions from both aspects of contributions of model 

and solution methodology. From the aspect of modeling approach, a real case study can be 

recommended to do more analyses on the proposed model. Routing decisions can be considered into 

our model. The reverse logistics activities can be ordered to be added into the developed model. As 
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such, more analyses can be suggested for the proposed hybrid approach. Some other large-scale 

optimization problems can be applied to assess the proposed hybrid algorithm. The effect of tuning 

for the proposed hybrid method would be also intersecting for the future works.  
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