

UCT JOURNAL OF RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY 2018(03)

Available online at http://journals.researchub.org

*Corresponding author: goaolga@rambler.ru
DOI: https://doi.org/10.24200/jrset.vol6iss03pp25-27

An investigation of classification and comparison of R tree construction
algorithms with A Set of R* and R+ trees

Goranova Olga*, Onufrieva Anna, Dmitrieva Olga, Titov Evgeniy, Atroshenko Larisa

Department of urban economy and housing law, Moscow Metropolitan Governance University, Moscow, Russian Federation,

A R T I C L E I N F O A B S T R A C T
Article history:
Received 24 Apr. 2018
Accepted 01 June 2018
Published 26 Aug. 2018

 Given the growth of the internet network and the importance of the quality of different services that must be
provided to users by several networks, packet classification is receiving increasing attention as one of the
main and sensitive requirements of the network. Such that for the most services provided by the network,
the routers must perform the classification with high speed and low memory usage. Packet classification
enables the routers to provide modern network services. The classification is performed geometrically in R-
tree. The main theory of the spatial index which considered as the most important theory of inquiry is the
calculation of proximity theory. The most famous index structure is called the R-tree. The main strategy for
R-tree is to collect multidimensional spatial nodes with a minimum boundary rectangle (MBR) that is the
smallest inner spatial node of the rectangle. After indexing, the optimization of retrieving information from
a spatial database has great importance. Hence for more discussion, a new spatial index belonged to the R+

tree family called R++ tree is investigated in this paper which maintains the overlap of the nodes. The results
show that the suggested R+ tree outperforms the R+ tree in domains of queries, KNN queries, and Top-k
queries.

Keywords:
Algorithms, R Trees, Packets,
Classification

1. INTRODUCTION

Histograms are important structures that first used in
database systems in order to selective estimate the
queries. They are used to obtain a fast-approximate
response to important dense queries. Most histograms are
based on the network and are only applicable to two-point
data. An optimal designing for the multidimensional
histograms is famed as an NP-hard problem [1-3]. The
current situation indicates that during a query execution in
a spatial database management system (SDBMS), the
query optimizer creates all of the schemes available in
query assessment. These schemes are all similar in the
eventual result but differ in execution cost and time [4, 5].

The philosophy of the histogram buckets assignment
is allocating them to subspaces that correctly detect
clusters of objects. Therefore, first, a method for finding
the center of each object cluster is proposed. Then an
algorithm to create histogram buckets from these centers
is suggested. These buckets are initialized from the cluster
centers and then expanded to cover the clusters. The best
expansion approach is selected based on the concept of
increasing skewness [6].

One of the first methods proposed for
multidimensional data is called the h tree. This method
creates partitions from multidimensional space
overlapping based on the frequency as the origin
parameter [2]. The authors suggest two strategies:

1) The basic variable acts like follow: In the first
phase, the algorithm computes a defined network and the
number of subclass spatial objects for each cell. Then
base on the network computed, the binary space
partitioning (BSP) is used to compute the histograms.

2) To reduce the effect of the second structure
strategy, i.e., MinSkew progressive refinement, several
networks with different partitions are used. Each network

partition is used to create equal segments of histogram
linking curves [2].

MinSkew is a known method for creating histograms
of spatial data. This method first estimates the main data
using a uniform network. Then start with a single bucket
consisted of all data objects. The spatial deviation and
split point along its dimensions which produces the
maximum reduction in spatial deviation are calculated for
each bucket. Then MinSkew selects the buckets whose
splits lead to the biggest reduction in spatial skewness.
Next, divides these buckets into two child buckets, and
assigns data from the old bucket to the new one. After
MinSkew completed, the created histogram is a set of
non-overlapping buckets [7].

The bichromatic bucket creation algorithm can easily
be used to receive a new copy for every produced bucket.
The set of bichromatic buckets is then reported as the
final histogram. This strategy, i.e., converting each bucket
to a bichromatic after completing the histogram creation
process, can be utilized in any method in which the
created buckets are not overlapping [8].

ST-Hist is a method of creating histograms for
two/three-dimensional geographical data. Given a dataset
with the data space, ST-Hist first partitions the whole data
space into a number of data segments. Then for each
segment, ST-Hist detects dense points that turn into
histogram buckets, recursively. Here, the dense points
refer to a data region that meets special conditions in
terms of shape, size and body frequency. Every bucket is
recognized in a data region which is an organized bucket
tree. Considering the bichromatic bucket creation method,
it is possible to use this method to convert each produced
bucket by ST-Hist during the histogram creation process
into a bichromatic version. In another word, for each data
segment, once the root bucket is created, the bichromatic

26 UCT JOURNAL OF RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY 6(3) (2018) 25–27,

bucket creation algorithm is applied to this root bucket.
Then, ST-Hist detects the points within the improved root
bucket and turns them into child buckets. The bichromatic
bucket creation algorithm is applied to each one of these
child buckets in order to obtain an enhanced copy. This
process continues until no new bucket is left to create [2].

ST-Hist-c is an improved version of the ST-Hist
method that uses the same framework as ST-Hist. The
ST-Hist considers rigid conditions on shape and size to
detect region. This is mainly because of an easily related
way to find dense regions. However, due to these rigid
conditions, ST-Hist sometimes fails to detect the object
clusters in datasets. To create an accurate histogram, ST-
Hist-c assigns buckets to data clusters locations. First of
all, a clustering algorithm is combined with two statistical
methods in order to find the number and the location of
the object clusters. Then a new algorithm is proposed to
create buckets from cluster centers. The bucket region
gradually expands from the cluster center to all directions.
During a bucket expansion, the best approach among
many possible expansion methods is selected based on a
new concept of increasing skewness [9].

2. EXPERIMENTS

In this paper, the implementation of different
histograms is investigated. The MinSkew is used as a
reference method that works well. The second method is
called MinSkewProg. For d	 = 	2 a network with 24 cells
is used. For 푑 = 	3, 2 cells are considered in MinSkew.
Four networks with 2 , 2 , 2 	, 2 cells are considered in
MinSkewProg. Other methods used in experiments are
listed in table 1.

Table 1. A review of the cost functions of the studied

methods.
Definitions Cost Function

MBR C
C expansion with average, query

side length C

K-Uniformity criterion C
Spatial Skew of MBR C

Definition Histogram
MinSkew, stable network MinSkew

MinSkewProg, filter MinSkewProg
rkHist with α = 0.1 rkHist

Size-invariant Partitioning, Hilbert
curve RTree

Cv, Hilbert Curve R-V
C , Hilbert Curve R-VQP
C , Hilbert Curve R-RK
C , Hilbert Curve R-SK

ST-Hist Forrest FST

3. RESULTS
3.1 Construction and estimation time

To reduce the approximate time, the histogram can be
provided as the main memory of R-Tree. Figure (1) shows
the performance of the size of linking curves and total
workload time to provide a histogram. The first two lines
belong to R-Tree and the third line relates to an array for
linking curves. Main memory adjustments are considered

for R-Tree and output capacity is set to 12 entries for each
group (the best set in experiments). In addition, an R-Tree
is created using the histogram linking curves through an
OTP partitioning method with C as a cost function.

Fig.1 the histogram of R-Tree

Figure (2) show the results of R-Tree methods in

comparison with size-invariant partitioning strategies for
d=2 data point. It is observed that the methods which use
an optimal partitioning framework based on type have
more accuracy than the R-Tree method.

Fig. 2 results of R-Tree methods

A possible solution is to data distribution partitioning

with respect to target shape and size and creating a
histogram or indexing independently for each category
[10].

3.2 Difference between R, R* and R+ Trees

The tree is a method for looking up data with a
location that is often represented as (x, y). Searching a
tree with one leaf is a solved problem. Searching a tree
with two or more leaves, and request for locations near
both x and y coordinates require craftier algorithms. R*
tree is generally a tree- type data structure that is used to
index local information [11].

3.3 Difference between R+ tree and R Tree

R+ tree is a compromise between R tree and kd-tree.
This type of tree avoids the overlap of inner nodes by
inserting an object to several leaves if necessary. Two or
more nodes have complete overlapping. Minimum
overlapping reduces the set of search paths toward a leaf
(reduce even more in case of accessing minimum critical
overlapping.). An efficient search requires minimum
coverage and overlapping [5].

R tree and R+ tree are different from the following
aspects:

 UCT JOURNAL OF RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY 6(3) (2018) 25–27, 27

At least half of the nodes are not guaranteed. The

entries of each inner node are not overlapped. An
identifier of an object can be stored in more than one leaf
node [12].

Advantages: The nodes have no overlapping with each
other. The query of a point within spatial regions is
covered at most by a node. A unified path is followed,
and fewer nodes are visited compared with R Tree [2].

Disadvantages: Since the rectangles are repeated, the
size of an R+ tree might become so bigger than an R tree
over the same dataset. Construction and maintenance of
an R+ tree are more complex than the construction and
maintenance of other types of R trees [13].

R* tree is a type of R tree that is used to index local
information. The cost of creating an R* tree is slightly
higher than the standard R trees. Although data might
require replacement, this tree normally has better query
performance. This tree just like standard R tree can be
stored in both two points and spatial data.

3.4. Difference between R* tree and R tree

Minimizing the overlap and coverage, both rely on R
tree performance. The overlapping means that during data
query or insertion, more than one branch of the tree is
required for expansion. Minimum overlapping leads to
improve pruning operation. In most cases, it allows
excluding entire pages from the search, especially for
negative domain queries.

R* tree tries to reduce both (overlapping and
coverage). This tree uses the combination of a revised
splitting algorithm and the concept of forced reinsertion in
order to avoid the overflow of a node. It depends on the R
tree structure observations and is very sensitive to the
order of input insertion. Therefore, the structure of insert
construction is probably suboptimal. Insertion and
removal of the inputs allow finding a location in the trees
that is more suitable than the original place [2]. In table 2,
a comparison between R, R* and R+ trees is presented.

Table. 2. A comparison between R, R* and R+ trees.
R Comparison

R+ There are fewer nodes in R+ compared to R.

R* The structure of insert construction is probably
suboptimal.

4. CONCLUSION

For future works, researchers can use the R+ tree for
packet classification. The R+ tree is a method to lookup
data with a location like coordinates (x, y), for places on
the ground. The R+ tree is a compromise between R tree
and kd-tree and avoids the overlap of inner nodes by
inserting an object to several leaves if necessary. This tree
reduces the minimum overlap of a set of search paths
toward a leaf. An optimum search requires a minimum of
coverage and overlapping. One advantage of this
algorithm is non-overlapped nodes, which leads to higher
performance of queries. Among the disadvantages is that
since rectangles are repeated, the tree becomes bigger
than a regular R tree over the same dataset. Moreover, the
construction and maintenance of the R+ tree are more
complex than a standard R tree. Experimental results

show that ST-Hist is better than other proposed methods.
In this paper, R++, R+, and R* trees are compared as
common indicators of the R tree family. The R++ tree is
proposed as an improved version of the R+ tree. The
results show that the suggested R++ tree outperforms the
R+ tree in domains of queries, KNN queries, and Top-k
queries. However, the performance of the R++ tree
decreases by the dimension growing, because repetition
values are also increased. Finally, it is shown that the
efficiency of the search time of the R++ tree is so much
better than the R+ tree, especially when the duplicate data
point is considered.

REFERENCES
[1] Z. Houshmandian, "Presentation of a Packet

Classification Algorithm Using R Tree", MSc thesis,
Islamic Azad University, Kermanshah Branch,
Kermanshah, Iran, 2015.

[2] N.M. BalouchZehi, M. Fathi, S. Yousefi, "Internet
Packet Classification using Prefix-Based Bitmap
Intersection", Iranian Journal of Science Research,
Vol. 3, Num. 1 (a), 2005.

[3] B. Roshan. R, "A Packet Classification using Bit
Matrices", 8th Annual Iranian Computer Society
Conference, 2002.

[4] M. Fathi, N.M. BalouchZehi, "Presentation of a
Method to packet Classification based on Bit
Matrices", 9th Annual Iranian Computer Society
Conference, Sharif University of Technology, Tehran,
2003.

[5] M. V, Mohammadi, "Present a Hybrid Method of IP
Traffic Classification with Help of Feature Mapping
and Genetic Algorithms", 15th International
Conference of Iranian Computer Society, Energy
Technology development Center, Tehran, 2009.

[6] A. M. Abedi, V. Dehghan, M. Sabaei, "A New
Algorithm for Detecting and Repairing Interferences
Available between Dominated principles of Firewalls
", Conference of Information Technology and
Economic Jihad, Kazerun Higher Education Complex,
Kazerun, Iran, 2011.

[7] S. VahabZadeh, "Packet Classification using six-bit
trees", 12th Annual Iranian Computer Society
Conference, 2006.

[8] H. Abdoli, H. Saeedi, "packet Classification
Algorithm in Non-uniform Separators", 14th Iranian
Conference on Electrical Engineering, 2006.

[9] F. Baker, editor. “Requirements for IP version 4
routers,” RFC 1812,
http://www.ietf.org/rfc/rfc2676.txt, June 1995.

[10] Pankaj Gupta, “Algorithms for Routing Lookups and
Packet Classification”, PhD dissertation, Computer
Science Department, Stanford university, 2000

[11] C. Hedrick. “Routing information protocol,” RFC
1058,http://www.ietf.org/rfc/rfc1058.txt, June 1988.

[12] P. Gupta, and N. McKeown, "Algorithms for Packet
Classification," IEEE Trans. Network, vol. 15, no. 2,
pp. 24- 32, 2001.

[13] D. E. Taylor, "Survey and Taxonomy of Packet
Classification Techniques," Journal of ACM
Computing Surveys, vol. 37, no. 3, pp. 238-275, 2005.

28 UCT JOURNAL OF RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY 6(3) (2018) 25–27,

